Rho GTPase overactivation by E. coli CNF-1 disrupts epithelial tight junction structure and barrier function

2001 ◽  
Vol 120 (5) ◽  
pp. A110-A110
Author(s):  
A HOPKINS ◽  
S WALS ◽  
P VERKADE ◽  
P BOQUET ◽  
A NUSRAT
2001 ◽  
Vol 120 (5) ◽  
pp. A110
Author(s):  
Ann M. Hopkins ◽  
Shaun V. Wals ◽  
Paul Verkade ◽  
Patrice Boquet ◽  
Asma Nusrat

1999 ◽  
Vol 116 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Heinz Schmitz ◽  
Christian Barmeyer ◽  
MichaeL Fromm ◽  
Norbert Runkel ◽  
Hans-Dieter Foss ◽  
...  

2015 ◽  
Vol 26 (12) ◽  
pp. 2252-2262 ◽  
Author(s):  
Bejan J. Saeedi ◽  
Daniel J. Kao ◽  
David A. Kitzenberg ◽  
Evgenia Dobrinskikh ◽  
Kayla D. Schwisow ◽  
...  

Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA–mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis.


2016 ◽  
Vol 120 (6) ◽  
pp. 692-701 ◽  
Author(s):  
Karol Dokladny ◽  
Micah N. Zuhl ◽  
Pope L. Moseley

A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.


2018 ◽  
Vol 154 (6) ◽  
pp. S-862
Author(s):  
Ali Shawki ◽  
Rocio Alvarez ◽  
Moorthy Krishnan ◽  
Paul Ruegger ◽  
James Borneman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document