Application of cyclic plasticity for modeling ratcheting in metals

2022 ◽  
pp. 325-355
Author(s):  
Guozheng Kang ◽  
Qianhua Kan
Keyword(s):  
2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2015 ◽  
Vol 57 (2) ◽  
pp. 171-175
Author(s):  
Jeremie Bouquerel ◽  
Foriane Léaux ◽  
Jean-Bernard Vogt ◽  
Frederic Palleschi

2004 ◽  
Vol 46 (7-8) ◽  
pp. 363-373
Author(s):  
Hai Ni ◽  
Zhirui Wang

2015 ◽  
Vol 60 (1) ◽  
pp. 101-105 ◽  
Author(s):  
A. Rutecka ◽  
Z.L. Kowalewski ◽  
K. Makowska ◽  
K. Pietrzak ◽  
L. Dietrich

Abstract The results of comparative examinations of mechanical behaviour during fatigue loads and microstructure assessment before and after fatigue tests were presented. Composites of aluminium matrix and SiC reinforcement manufactured using the KoBo method were investigated. The combinations of two kinds of fatigue damage mechanisms were observed. The first one governed by cyclic plasticity and related to inelastic strain amplitude changes and the second one expressed in a form of ratcheting based on changes in mean inelastic strain. The higher SiC content the less influence of the fatigue damage mechanisms on material behaviour was observed. Attempts have been made to evaluate an appropriate fatigue damage parameter. However, it still needs further improvements.


2020 ◽  
Vol 28 ◽  
pp. 53-60
Author(s):  
Jelena Srnec Novak ◽  
Marina Franulović ◽  
Denis Benasciutti ◽  
Francesco De Bona

1991 ◽  
Vol 113 (2) ◽  
pp. 254-262 ◽  
Author(s):  
Fan Jinghong ◽  
Peng Xianghe

The hardening behavior of materials in nonproportional cyclic process is related to the internal changes of materials, such as dislocation cell for wary slip material and ladder or vein substructures for planar slip material. The multiplicatively separated form of hardening function f, in terms of nonhardening region proposed by Ohno [1], and the measure of nonproportionality A proposed by Banallal and Marquis in 1987 [2], is then explained on this physical foundation. The new contributions of this hardening function are: (a) two parameters (f2 and f3) dependent on A are used to differentiate between the influence of latent hardening realized by a sudden change of loading direction, and hereditary hardening associated with nonproportional loading, (b) a general differential form fi (i = 1,2,3) is proposed, and memorial parameters a1 and a3 are introduced to describe different deformation history effects for wary and planar slip materials, (c) different hardening mechanisms through fi are embedded into thermomechanically constitutive relation. The stress responses of 304 and 316 stainless steels subjected to biaxial nonproportional loadings at room temperature are analyzed and compared with the experimental results obtained by Chaboche [3], Tanaka [4, 5] and Ohno [1].


Sign in / Sign up

Export Citation Format

Share Document