mean stress effect
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 221 ◽  
Author(s):  
Philippe Spätig ◽  
Jean-Christophe Le Roux ◽  
Matthias Bruchhausen ◽  
Kevin Mottershead

The mean stress effect on the fatigue life of 304L austenitic steel was evaluated at 300 °C in air and pressurized water reactor (PWR) environments. Uniaxial tests were performed in strain-control and load-control modes, with zero mean stress and a positive mean stress of 50 MPa. A specific procedure was used for the strain-controlled experiments to maintain the strain amplitude and mean stress constant. The strain-controlled data indicate that the application of positive mean stress decreases the fatigue life for a given strain amplitude in air and PWR environments. The data also show that the life reduction is independent of the environments, suggesting that no synergistic effects between the mean stress and the LWR environment occur. The load-controlled experiments confirm that the application of positive mean stress increases fatigue due to cyclic hardening processes. This observation is much less pronounced in the PWR environment. All data were analyzed using the Smith–Watson–Topper (SWT) stress–strain function, which was shown to correlate well with all strain- and load-controlled data with and without mean stress in each environment. In the SWT–life curve representation, the life reduction in the PWR environment was found fully consistent with the NUREG-CR6909 predictions.



Author(s):  
D. Gaia da Silva ◽  
J.T. Lockwood ◽  
W. Liang ◽  
T.H. Topper


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2985
Author(s):  
Michał Böhm ◽  
Krzysztof Kluger ◽  
Sławomir Pochwała ◽  
Mariusz Kupina

The paper presents the experimental fatigue test results for cyclic constant amplitude loading conditions for the case of the torsion of the PA4 (AW-6082-T6), PA6 (AW-2017A-T4) and PA7 (AW-2024-T3) aluminum alloy for a drilled diabolo type test specimen. The tests have been performed for the stress asymmetry ratios R = −1, R = −0.7, R = −0.5 and R = −0.3. The experimental results have been used in the process of a fatigue life estimation performed for a random generated narrowband stress signal with a zero and a non-zero global mean stress value. The calculations have been performed within the time domain with the use of the rainflow cycle counting method and the Palmgren−Miner damage hypothesis. The mean stress compensation has been performed with the S-N curve mean stress model proposed by Niesłony and Böhm. The model has been modified in terms of torsional loading conditions. In order to obtain an appropriate R = 0 ratio S-N curve fatigue strength amplitude, the Smith−Watson−Topper model was used and compared with literature fatigue strength amplitudes. The presented solution extends the use of the correction model in terms of the torsional loading condition in order to obtain new S-N curves for other R values on the basis of the R = −1 results. The work includes the computational results for new fatigue curves with and without the mean stress effect correction. The results of the computations show that the mean stress effect plays a major role in the fatigue life assessment of the tested aluminum alloys and that the method can be used to assess the fatigue life under random conditions.



2020 ◽  
Vol 133 ◽  
pp. 105391 ◽  
Author(s):  
Sabrina Vantadori ◽  
Andrea Carpinteri ◽  
Raimondo Luciano ◽  
Camilla Ronchei ◽  
Daniela Scorza ◽  
...  






2020 ◽  
Author(s):  
S. J. Wu ◽  
R. T. Qu ◽  
Z.W. Zhu ◽  
H. F. Zhang ◽  
Zhefeng Zhang


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Masayuki Kamaya

The mean stress effect on the fatigue life of type 316 stainless steel was investigated in simulated pressurized water reactor (PWR) primary water and air at 325 °C. The tests in air environment have revealed that the fatigue life was increased with application of the positive mean stress for the same stress amplitude because the strain range was decreased by hardening of material caused by increased maximum peak stress. On the other hand, it has been shown that the fatigue life obtained in simulated PWR primary water was decreased compared with that obtained in air environment even without the mean stress. In this study, type 316 stainless steel specimens were subjected to the fatigue test with and without application of the positive mean stress in high-temperature air and PWR water environments. First, the mean stress effect was discussed for high-temperature air environment. Then, the change in fatigue life in the PWR water environment was evaluated. It was revealed that the change in the fatigue life due to application of the mean stress in the PWR water environment could be explained in the same way as for the air environment. No additional factor was induced by applying the mean stress in the PWR water environment.



Sign in / Sign up

Export Citation Format

Share Document