Applications of the stem cell secretome in regenerative medicine

Author(s):  
Bárbara Mendes-Pinheiro ◽  
Ana Marote ◽  
Cláudia R. Marques ◽  
Fábio G. Teixeira ◽  
Jorge Cibrão Ribeiro ◽  
...  
2020 ◽  
Vol 15 (9) ◽  
pp. 2045-2051
Author(s):  
Dusko Ilic ◽  
Mirjana Liovic

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in May 2020.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Birbal Singh ◽  
Gorakh Mal ◽  
Vinod Verma ◽  
Ruchi Tiwari ◽  
Muhammad Imran Khan ◽  
...  

Abstract Background The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. Main body Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. Conclusions The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


2020 ◽  
Vol 15 (10) ◽  
pp. 2145-2152
Author(s):  
Dusko Ilic ◽  
Mirjana Liovic

Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in June 2020.


2016 ◽  
Vol 1383 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Brad J. Tricomi ◽  
Andrew D. Dias ◽  
David T. Corr

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nadia Y. A. Alaidaroos ◽  
Amr Alraies ◽  
Rachel J. Waddington ◽  
Alastair J. Sloan ◽  
Ryan Moseley

Abstract Background Dental pulp stem cells (DPSCs) are increasingly being advocated as viable cell sources for regenerative medicine-based therapies. However, significant heterogeneity in DPSC expansion and multi-potency capabilities are well-established, attributed to contrasting telomere profiles and susceptibilities to replicative senescence. As DPSCs possess negligible human telomerase (hTERT) expression, we examined whether intrinsic differences in the susceptibilities of DPSC sub-populations to oxidative stress-induced biomolecular damage and premature senescence further contributed to this heterogeneity, via differential enzymic antioxidant capabilities between DPSCs. Methods DPSCs were isolated from human third molars by differential fibronectin adhesion, and positive mesenchymal (CD73/CD90/CD105) and negative hematopoietic (CD45) stem cell marker expression confirmed. Isolated sub-populations were expanded in H2O2 (0–200 μM) and established as high or low proliferative DPSCs, based on population doublings (PDs) and senescence (telomere lengths, SA-β-galactosidase, p53/p16INK4a/p21waf1/hTERT) marker detection. The impact of DPSC expansion on mesenchymal, embryonic, and neural crest marker expression was assessed, as were the susceptibilities of high and low proliferative DPSCs to oxidative DNA and protein damage by immunocytochemistry. Expression profiles for superoxide dismutases (SODs), catalase, and glutathione-related antioxidants were further compared between DPSC sub-populations by qRT-PCR, Western blotting and activity assays. Results High proliferative DPSCs underwent > 80PDs in culture and resisted H2O2−induced senescence (50–76PDs). In contrast, low proliferative sub-populations exhibited accelerated senescence (4–32PDs), even in untreated controls (11-34PDs). While telomere lengths were largely unaffected, certain stem cell marker expression declined with H2O2 treatment and expansion. Elevated senescence susceptibilities in low proliferative DPSC (2–10PDs) were accompanied by increased oxidative damage, absent in high proliferative DPSCs until 45–60PDs. Increased SOD2/glutathione S-transferase ζ1 (GSTZ1) expression and SOD activities were identified in high proliferative DPSCs (10–25PDs), which declined during expansion. Low proliferative DPSCs (2–10PDs) exhibited inferior SOD, catalase and glutathione-related antioxidant expression/activities. Conclusions Significant variations exist in the susceptibilities of DPSC sub-populations to oxidative damage and premature senescence, contributed to by differential SOD2 and GSTZ1 profiles which maintain senescence-resistance/stemness properties in high proliferative DPSCs. Identification of superior antioxidant properties in high proliferative DPSCs enhances our understanding of DPSC biology and senescence, which may be exploited for selective sub-population screening/isolation from dental pulp tissues for regenerative medicine-based applications.


Sign in / Sign up

Export Citation Format

Share Document