premature senescence
Recently Published Documents


TOTAL DOCUMENTS

638
(FIVE YEARS 131)

H-INDEX

60
(FIVE YEARS 6)

iScience ◽  
2022 ◽  
pp. 103757
Author(s):  
Diane Frankel ◽  
Valérie Delecourt ◽  
Elva-María Novoa-del-Toro ◽  
Jérôme D. Robin ◽  
Coraline Airault ◽  
...  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Alice-Anaïs Varlet ◽  
Camille Desgrouas ◽  
Cécile Jebane ◽  
Nathalie Bonello-Palot ◽  
Patrice Bourgeois ◽  
...  

Many proteins are causative for inherited partial lipodystrophies, including lamins, the essential constituents of the nuclear envelope scaffold called the lamina. By performing high throughput sequencing on a panel of genes involved in lipodystrophies, we identified a heterozygous mutation in LMNB2 gene (c.700C > T p.(Arg234Trp)) in a female patient presenting early onset type II diabetes, hypertriglyceridemia, and android fat distribution. This mutation is rare in the general population (frequency 0.013% in GnomAD) and was predicted pathogenic by a set of pathogenicity prediction software. Patient-derived fibroblasts showed nuclear shape abnormalities and premature senescence features, which are two typical cellular phenotypes associated with laminopathies. Moreover, we observed an atypical aggregation of lamin B2 in nucleoplasm, which co-distributes with emerin and lamin A/C, along with an abnormal distribution of lamin A/C at the nuclear envelope. Finally, reducing lamin B2 expression level by siRNA targeted toward LMNB2 transcripts resulted in decreased nuclear anomalies and senescence-associated beta-galactosidase, suggesting a role of the mutated protein in the occurrence of the observed cellular phenotype. Altogether, these results suggest that mutations in lamin B2 could produce premature senescence and partial lipodystrophy features as observed with certain mutants of lamin A/C.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vik Meadows ◽  
Leonardo Baiocchi ◽  
Debjyoti Kundu ◽  
Keisaku Sato ◽  
Yessenia Fuentes ◽  
...  

Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaoyan Zheng ◽  
Jingqin Lu ◽  
Di Yu ◽  
Jing Li ◽  
Hai Zhou ◽  
...  

Abstract Background Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence. Results This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice. The upregulation of OsHXK1 led to premature senescence of rice leaves, a decreased level of chlorophyll, and damage to the chloroplast structure. The overexpression of OsHXK1 resulted in increases in glucose and ROS levels and produced programmed cell death (PCD) signals earlier at the booting stage. Further analysis showed that expression level of the respiratory burst oxidase homolog (RBOH) genes and OsGLO1 were increased in OsHXK1-overexpressing plants at the booting stage. Conclusions Overall, the outcomes of this study suggested that OsHXK1 could act as a positive regulator of rice leaf senescence by mediating glucose accumulation and inducing an increase in ROS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Merdji ◽  
Valérie Schini-Kerth ◽  
Ferhat Meziani ◽  
Florence Toti

AbstractAmong the long-term consequences of sepsis (also termed “post-sepsis syndrome”) the increased risk of unexplained cardiovascular complications, such as myocardial infarction, acute heart failure or stroke, is one of the emerging specific health concerns. The vascular accelerated ageing also named premature senescence is a potential mechanism contributing to atherothrombosis, consequently leading to cardiovascular events. Indeed, vascular senescence-associated major adverse cardiovascular events (MACE) are a potential feature in sepsis survivors and of the elderly at cardiovascular risk. In these patients, accelerated vascular senescence could be one of the potential facilitating mechanisms. This review will focus on premature senescence in sepsis regardless of age. It will highlight and refine the potential relationships between sepsis and accelerated vascular senescence. In particular, key cellular mechanisms contributing to cardiovascular events in post-sepsis syndrome will be highlighted, and potential therapeutic strategies to reduce the cardiovascular risk will be further discussed.


2021 ◽  
Vol 13 ◽  
Author(s):  
Sandra Lizbeth Morales-Rosales ◽  
Roberto Santín-Márquez ◽  
Pedro Posadas-Rodriguez ◽  
Ruth Rincon-Heredia ◽  
Teresa Montiel ◽  
...  

The decline in brain function during aging is one of the most critical health problems nowadays. Although senescent astrocytes have been found in old-age brains and neurodegenerative diseases, their impact on the function of other cerebral cell types is unknown. The aim of this study was to evaluate the effect of senescent astrocytes on the mitochondrial function of a neuron. In order to evaluate neuronal susceptibility to a long and constant senescence-associated secretory phenotype (SASP) exposure, we developed a model by using cellular cocultures in transwell plates. Rat primary cortical astrocytes were seeded in transwell inserts and induced to premature senescence with hydrogen peroxide [stress-induced premature senescence (SIPS)]. Independently, primary rat cortical neurons were seeded at the bottom of transwells. After neuronal 6 days in vitro (DIV), the inserts with SIPS-astrocytes were placed in the chamber and cocultured with neurons for 6 more days. The neuronal viability, the redox state [reduced glutathione/oxidized glutathione (GSH/GSSG)], the mitochondrial morphology, and the proteins and membrane potential were determined. Our results showed that the neuronal mitochondria functionality was altered after being cocultured with senescent astrocytes. In vivo, we found that old animals had diminished mitochondrial oxidative phosphorylation (OXPHOS) proteins, redox state, and senescence markers as compared to young rats, suggesting effects of the senescent astrocytes similar to the ones we observed in vitro. Overall, these results indicate that the microenvironment generated by senescent astrocytes can affect neuronal mitochondria and physiology.


Sign in / Sign up

Export Citation Format

Share Document