Increasing Power System Flexibility to Integrate High Share of Renewable Energy

Author(s):  
Siyuan Chen ◽  
Pei Liu ◽  
Zheng Li
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 516
Author(s):  
Ekata Kaushik ◽  
Vivek Prakash ◽  
Om Prakash Mahela ◽  
Baseem Khan ◽  
Adel El-Shahat ◽  
...  

Increased deployment of variable renewable energy (VRE) has posed significant challenges to ensure reliable power system operations. As VRE penetration increases beyond 80%, the power system will require long duration energy storage and flexibility. Detailed uncertainty analysis, identifying challenges, and opportunities to provide sufficient flexibility will help to achieve smooth operations of power system networks during the scenario of high share of VRE sources. Hence, this paper presents a comprehensive overview of the power system flexibility (PSF). The intention of this review is to provide a wide spectrum of power system flexibility, PSF drivers, PSF resources, PSF provisions, methods used for assessment of flexibility and flexibility planning to the researchers, academicians, power system planners, and engineers working on the integration of VRE into the utility grid to achieve high share of these sources. More than 100 research papers on the basic concepts of PSF, drivers of the PSF, resources of PSF, requirement of the PSF, metrics used for assessment of the flexibility, methods and approaches used for measurement of flexibility level in network of the power system, and methods used for the PSF planning and flexibility provisions have been thoroughly reviewed and classified for quick reference considering different dimensions.


2021 ◽  
Vol 34 ◽  
pp. 100625
Author(s):  
D. Saygin ◽  
O.B. Tör ◽  
M.E. Cebeci ◽  
S. Teimourzadeh ◽  
P. Godron

2020 ◽  
Vol 31 ◽  
pp. 100539 ◽  
Author(s):  
Semich Impram ◽  
Secil Varbak Nese ◽  
Bülent Oral

2019 ◽  
Vol 9 (3) ◽  
pp. 561 ◽  
Author(s):  
Chang-Gi Min

This study investigates the impact of variability and uncertainty on the flexibility of a power system. The variability and uncertainty make it harder to maintain the balance between load and generation. However, most existing studies on flexibility evaluation have not distinguished between the effects of variability and uncertainty. The countermeasures to address variability and uncertainty differ; thus, applying strategies individually tailored to variability and uncertainty is helpful for more efficient operation and planning of a power system. The first contribution of this study is in separating the variability and uncertainty, and determining which is more influential in terms of flexibility in specific system situations. A flexibility index, named the ramping capability shortage probability (RSP), is used to quantify the extent to which the variability and uncertainty affect the flexibility. The second contribution is to generate various scenarios for variability and uncertainty based on a modified IEEE-RTS-96, to evaluate the flexibility. The penetration level of renewable energy resources is kept the same in each scenario. The results of a sensitivity analysis show that variability is more effective than uncertainty for high and medium net loads.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2813
Author(s):  
Valeri Mladenov ◽  
Vesselin Chobanov ◽  
Angel Georgiev

A power system can be defined as flexible if it can within economic and technological boundaries respond quickly and adequately to variations in supply and demand. The ongoing penetration of variable and intermittent renewable energy sources (RES) like wind and solar imposes additional and more critical requirement on power system flexibility. In this paper we propose a method to quantify these requirements based on the comparison of seven demand side parameters describing the statistical properties of the net load and the residual load of the referred power system. Each one of these parameters reflects a separate requirement on the available conventional generation in hourly and daily time scales—ramp up and ramp-down capabilities, technological minimum of generation, daily variation of generation. The proposed approach can be used to predict the requirements for generation flexibility according to the expected scenario of RES penetration in the future development of energy power system. It has been applied and integrated from the Bulgarian Transmission System Operator (TSO) which name is the Bulgarian Electricity System Operator (ESO).


Sign in / Sign up

Export Citation Format

Share Document