Reinforced and prestressed concrete bridges

2022 ◽  
pp. 267-325
Author(s):  
G.L. Balázs ◽  
G. Farkas ◽  
T. Kovács
Author(s):  
Rolando Salgado-Estrada ◽  
Sergio A. Zamora-Castro ◽  
Agustín L. Herrera-May ◽  
Yessica A. Sánchez-Moreno ◽  
Yair S. Sánchez-Moreno

2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


Bauingenieur ◽  
2016 ◽  
Vol 91 (12) ◽  
pp. 487-495
Author(s):  
Martin Herbrand ◽  
Martin Classen ◽  
Alexander Stark ◽  
Dominik Kueres

Während das Biegetragverhalten von Stahl- und Spannbetonbauteilen als gelöst angesehen wird, ist das Querkrafttragverhalten schubschlanker Bauteile nicht abschließend geklärt. Vor allem für die Beurteilung von Bestandsbauwerken sind aber Querkraftmodelle notwendig, die möglichst einfach anwendbar sind und dennoch ausreichend genaue und damit wirtschaftliche Vorhersagen der Tragfähigkeit erlauben. Ein einheitliches Querkraftmodell mit Betontraganteil für Stahl- und Spannbetonbauteile ermöglicht bei der Bemessung einen stetigen Übergang zwischen Bauteilen ohne und mit Querkraftbewehrung, wenn deren Betontraganteile für asw = 0 identisch sind. Der Vergleich mit den ACI-DAfStb-Querkraftdatenbanken belegt, dass ein solches Modell für Bauteile mit Querkraftbewehrung zu deutlich geringeren Streuungen und gleichzeitig einem höheren Sicherheitsniveau im Vergleich zum aktuellen EC2 führt. Insbesondere für Bauteile mit geringen Querkraftbewehrungsgraden ergeben sich hierdurch höhere rechnerische Tragfähigkeiten, was zum Beispiel für die Nachrechnung von Bestandsbauwerken wie Brücken von Vorteil ist. In diesem Beitrag werden die Hintergründe für einen konsistenten Übergang von einen Fachwerkmodell mit Betontraganteil zu einem Fachwerkmodell mit variabler Druckstrebenneigung erläutert.


Sign in / Sign up

Export Citation Format

Share Document