Flexural Vibration of Prestressed Concrete Bridges with Corrugated Steel Webs

2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3151 ◽  
Author(s):  
Paweł Dunaj ◽  
Krzysztof Marchelek ◽  
Stefan Berczyński ◽  
Berkay Mizrak

At the stage of designing a special machine tool, it is necessary to analyze many variants of structural solutions of frames and load-bearing systems and to choose the best solution in terms of dynamic properties, in particular considering its resistance to chatter. For this reason, it is preferred to adopt a low-dimensional calculation model, which allows the user to reduce the necessary calculation time while maintaining a high accuracy. The paper presents the methodology of modeling the natural frequencies, mode shapes, and receptance functions of machine tool steel welded frames filled with strongly heterogenous polymer concrete, using low-dimensional models developed by the rigid finite elements method (RigFEM). In the presented study, a RigFEM model of a simple steel beam filled with polymer concrete and a frame composed of such beams were built. Then, the dynamic properties obtained on the basis of the developed RigFEM models were compared with the experimental results and the 1D and 3D finite element models (FEM) in terms of accuracy and dimensionality. As a result of the experimental verification, the full structural compliance of the RigFEM models (for beam and frame) was obtained, which was manifested by the agreement of the mode shapes. Additionally, experimental verification showed a high accuracy of the RigFEM models, obtaining for the beam model a relative error for natural frequencies of less than 4% and on average 2.2%, and for the frame model at a level not exceeding 11% and on average 5.5%. Comparing the RigFEM and FEM models, it was found that the RigFEM models have a slightly worse accuracy, with a dimensionality significantly reduced by 95% for the beam and 99.8% for the frame.


2015 ◽  
Vol 23 (8) ◽  
pp. 1321-1333 ◽  
Author(s):  
Dhiraj Biswas ◽  
Chaitali Ray

The present paper deals with the free vibration modal analysis of hybrid laminates using a finite element model based on the third order shear deformation theory (TSDT) and the first order shear deformation theory (FSDT). A computer code has been developed using MATLAB, 2013. The experimental investigation on the free vibration of hybrid laminates made of carbon and glass fibres has been conducted. The hybrid laminate is prepared by placing carbon fibres in the outermost laminae and glass fibres in the rest of the laminate. The bi-directional glass and carbon fabrics and the epoxy resin are used for the preparation of laminates in the laboratory. The experimental models of laminates have been prepared by the resin infusion process using vacuum bagging technique. The natural frequencies of hybrid laminates for different modes are determined and the mode shapes are plotted for the corresponding frequencies by experiment and numerical procedure. The finite element formulations based on TSDT and FSDT for the composite laminates predict the natural frequencies and are validated by comparing with the experimental results.


1988 ◽  
Vol 110 (4) ◽  
pp. 473-477 ◽  
Author(s):  
C. Z. Xiao ◽  
D. X. Lin ◽  
F. Ju

This paper is concerned with the finite element technique for predicting the dynamic properties of anisotropic fiber-reinforced composite laminated plates. Considering the effect of transverse shear deformation, a higher order shear deformation theory which satisifes the zero shear stress conditions at the upper and bottom surfaces is assumed. The natural frequencies and mode shapes of a rectangular plate with all free edges are obtained by finite element method and the modal damping values by finite damped element technique. An equivalent stiffness method is introduced to reduce computation time. Four different theoretical predictions of natural frequencies and damped values of a laminated plate are compared with experimental results. Discussions on the effect of transverse shear deformation to the dynamic properties of composite plates are given.


2016 ◽  
Vol 16 (03) ◽  
pp. 1450106 ◽  
Author(s):  
Y. Chen ◽  
J. Zhang ◽  
H. Zhang ◽  
X. Li ◽  
J. Zhou

Flapwise flexural vibration of rotating beams has been extensively studied since the 1970s. Existing methods for solving the aforementioned vibration problem range from the conventional finite element method to variable-order finite element method, Frobenius method, differential transformation method and dynamic stiffness method (DSM). Although various approximation methods are available, most of these methods are based on perturbation or discretization of the governing equation, often leading to tedious calculations. This paper re-examines flapwise flexural vibration of rotating beams using the method of variational iteration, which is relatively new and capable of providing accurate solutions for eigenvalue problems. The extracted natural frequencies and mode shapes for sample rotating beams with various rotational speeds and hub radii are compared with existing results that were published in the open literature.


Sign in / Sign up

Export Citation Format

Share Document