Application of graphene in protective coating industry: prospects and current progress

Author(s):  
Md Julker Nine ◽  
Dusan Losic
2020 ◽  
pp. 133-139
Author(s):  
Sanatan Ratna ◽  
B Kumar

In the past few decades, there has been lot of focus on the issue of sustainability. This has occurred due to the growing concerns related to climate change and the growing awareness about environmental concerns. Also, the competition at global level has led to the search for the most sustainable route in the industries. The current research work deals with the selection of green supplier in a Nickle coating industry based on certain weighted green attributes. For this purpose, a hybrid tool comprising of Fuzzy AHP (Fuzzy Analytical Hierarchy) and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) is used. The Fuzzy AHP is used for assigning proper weights to the selected criteria for supplier evaluation, while VIKOR is used for final supplier selection based on the weighted criteria. The three criterions for green supplier selection are, Ecological packaging, Corporate socio-environmental responsibility and Staff Training. The outcome of the integrated model may serve as a steppingstone to other SMEs in different sectors for selecting the most suitable supplier for addressing the sustainability issue.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2020 ◽  
Vol 56 (1) ◽  
pp. 57-69
Author(s):  
S. P. Rogalskiy ◽  
I. A. Morozovskaya ◽  
M. A. Boretskaya ◽  
T. V. Cherniavskaya ◽  
O. P. Tarasiuk ◽  
...  
Keyword(s):  

2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


Sign in / Sign up

Export Citation Format

Share Document