Isostatic Rebound and Palinspastic Restoration of the Bonneville and Provo Shorelines in the Bonneville Basin, UT, NV, and ID

Author(s):  
K.D. Adams ◽  
B.G. Bills
Evolution ◽  
1967 ◽  
Vol 21 (3) ◽  
pp. 439 ◽  
Author(s):  
Delbert W. Lindsay ◽  
Robert K. Vickery

2002 ◽  
Vol 39 (4) ◽  
pp. 505-518 ◽  
Author(s):  
Caroline Lavoie ◽  
Michel Allard ◽  
Philip R Hill

Eastern Hudson Bay is characterized by falling relative sea level as a result of post-glacial isostatic rebound, which makes the region a natural laboratory for rapid forced regression, where the evolution of deltaic systems and offshore sedimentation patterns can be studied. A multidisciplinary approach involving airphoto analysis, offshore geophysical surveys, sediment coring, and facies and diatom analyses was used in this study of the Nastapoka River delta. The delta has formed as a result of the fluvial erosion of emerged Quaternary sediments but is mainly subaqueous. Offshore, in the prodelta zone, the oldest deposits are glaciomarine, laid down when the ice front of the receding Laurentide ice sheet stood on the Nastapoka hills some 7700–6800 years BP. Lateral equivalents of this glaciomarine unit are presently exposed on land. The shallow-water platform of the delta shows a thin surficial unit of wave-worked sand that overlies fine-grained, deeper water deposits derived from erosion of clay soils in the river catchment a few centuries ago, probably during periods of intense thermokarst activity. As the isostatic uplift continues, the deltaic platform will gradually emerge and be incised by the river channel.


2016 ◽  
Author(s):  
Margaux Mouchené ◽  
Peter van der Beek ◽  
Sébastien Carretier ◽  
Frédéric Mouthereau

Abstract. Alluvial megafans are sensitive recorders of landscape evolution, controlled by autogenic processes and allogenic forcing and influenced by the coupled dynamics of the fan with its mountainous catchment. The Lannemezan megafan in the northern Pyrenean foreland was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised, leaving a flight of alluvial terraces along the stream network. We explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan using numerical modelling and compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river at time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision at a shorter time-scale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound appear unimportant.


Sign in / Sign up

Export Citation Format

Share Document