Experimental observation of heat generation rules of metallic materials under monotonic and cyclic loading

Author(s):  
X.Y. Tong ◽  
D.Y. Ye ◽  
L.J. Yao ◽  
Q. Sun
2010 ◽  
Vol 2010.18 (0) ◽  
pp. _620-1_-_620-3_
Author(s):  
Fuji OKADA ◽  
Kinya OGAWA ◽  
Hidetoshi KOBAYASHI ◽  
Keitaro HORIKAWA ◽  
Keiko WATANABE

Author(s):  
Oscar O. Rodriguez ◽  
Juan Carbone ◽  
Arturo A. Fuentes ◽  
Robert E. Jones ◽  
Constantine Tarawneh

The main purpose of this ongoing study is to investigate the effect of heat generation within a railroad thermoplastic elastomer suspension element on the thermal behavior of the railroad bearing assembly. Specifically, the purpose of this project is to quantify the heat generated by cyclic loading of the elastomer suspension element as a function of load amplitude, loading frequency, and operating temperature. The contribution of the elastomer pad to the system energy balance is modeled using data from dynamic mechanical analysis (DMA) of the specific materials in use for that part. DMA is a technique that is commonly used to characterize material properties as a function of temperature, time, frequency, stress, atmosphere or a combination of these parameters. DMA tests were run on samples of pad material prepared by three different processes: injection molded coupons, transfer molded coupons, and parts machined from an actual pad. The results provided a full characterization of the elastic deformation (Energy Storage) and viscous dissipation (Energy Dissipation) behavior of the material as a function of loading frequency, and temperature. These results show that the commonly used thermoplastic elastomer does generate heat under cyclic loading, though the frequency which produces peak heat output is outside the range of common loading frequency in rail service. These results can be combined with a stress analysis and service load measurements to estimate internally generated heat and, thus, enable a refined model for the evolution of bearing temperature during operation.


2013 ◽  
Vol 664 ◽  
pp. 866-870
Author(s):  
Zill-e Hasnain Minhas ◽  
Sun Qin

A generic heat generation equation with the heat transfer has been developed for pure mechanical loading. Frequency dependent temperature field can be obtained on a specimen subjected to pure mechanical, cyclic or non-cyclic loading. Results have been compared with the literature and a good agreement has been found with the experimental results. Applications and effectiveness of the equation is highlighted in predicting the fatigue damage in case of high cyclic or vibration fatigue.


Sign in / Sign up

Export Citation Format

Share Document