Analysis plane steel frame with semi-rigid connections and rigid-zones with consideration of the second order effect

2002 ◽  
pp. 1043-1049
Author(s):  
Vu Quoc Anh
1961 ◽  
Vol 3 (1) ◽  
pp. 28-44 ◽  
Author(s):  
W. G. V. Rosser
Keyword(s):  

2012 ◽  
Vol 446-449 ◽  
pp. 857-862
Author(s):  
Qi Shi Zhou ◽  
Xu Hong Zhou ◽  
Li Ming Yang

Author(s):  
Mostafa Zeinoddini ◽  
Woorya H. Shariati ◽  
Mahmood Nabipour

This paper reports results from a numerical investigation into the suction caissons penetration in sand. Two dimensional axisymmetric models have first been calibrated and verified against several laboratory and field test data from other researchers. Soil nonlinearities and soil/caisson interactions have been taken into account. The verified models have then been used to evaluate the effects from various soil/structure characteristics on the performance of the suction caissons during the installation phase in sand. The results of the current study show that the total installation force required for the full penetration of the caisson has a second order relationship with the soil/caisson interface strength reduction factor. The soil cohesion has also been found to have a second order effect on the total installation force. The soil internal friction angle, and the soil modulus of elasticity have each been noticed to present an increasing linear effect on the total installation force. It has also been observed that while the caisson diameter remains constant, with an increase in the caisson length the total installation force almost linearly increases. This is the same when the caisson length is kept constant but its diameter increases. Dilatancy angle and Poisson’s ratio have been realized to have a second order monotically increasing effect on the total installation force.


2010 ◽  
Vol 163-167 ◽  
pp. 760-765
Author(s):  
Jian Liu ◽  
Xiang Yun Huang ◽  
Ji Ping Hao ◽  
Guan Gen Zhou ◽  
Deng Feng Peng

A second-order inelastic analysis of semirigid connection steel frame structures is developed. Therein, shearing deformation and axial force simultaneously are considered. A new stability function considered shearing deformation and axial force simultaneously is proposed and the analysis methods for steel structure of semirigid connection based on the structural ultimate bearing capacity are established. The calculatical programe of second-order inelastic analysis semirigid connection steel frame structures is compiled. The numerical examples of steel frames for semirigid connection are analysed using the second-order inelastic analysis in the paper. Load–displacements predicted by the proposed analysis compare well with those given by other approaches. The analysis results show that the proposed method is suitable for adoption in practice.


Sign in / Sign up

Export Citation Format

Share Document