Analysis of Nonlinear Dynamic Second-Order Effect of a Large-Scale Container Crane Under Seismic Excitations

Author(s):  
Dong Wang ◽  
Gongxian Wang ◽  
Yeping Xiong ◽  
Jiquan Hu
Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


2018 ◽  
Vol 5 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Shekhar Singh Negi ◽  
Syed Abbas ◽  
Muslim Malik

AbstractBy using of generalized Opial’s type inequality on time scales, a new oscillation criterion is given for a singular initial-value problem of second-order dynamic equation on time scales. Some oscillatory results of its generalizations are also presented. Example with various time scales is given to illustrate the analytical findings.


2021 ◽  
Vol 502 (3) ◽  
pp. 3976-3992
Author(s):  
Mónica Hernández-Sánchez ◽  
Francisco-Shu Kitaura ◽  
Metin Ata ◽  
Claudio Dalla Vecchia

ABSTRACT We investigate higher order symplectic integration strategies within Bayesian cosmic density field reconstruction methods. In particular, we study the fourth-order discretization of Hamiltonian equations of motion (EoM). This is achieved by recursively applying the basic second-order leap-frog scheme (considering the single evaluation of the EoM) in a combination of even numbers of forward time integration steps with a single intermediate backward step. This largely reduces the number of evaluations and random gradient computations, as required in the usual second-order case for high-dimensional cases. We restrict this study to the lognormal-Poisson model, applied to a full volume halo catalogue in real space on a cubical mesh of 1250 h−1 Mpc side and 2563 cells. Hence, we neglect selection effects, redshift space distortions, and displacements. We note that those observational and cosmic evolution effects can be accounted for in subsequent Gibbs-sampling steps within the COSMIC BIRTH algorithm. We find that going from the usual second to fourth order in the leap-frog scheme shortens the burn-in phase by a factor of at least ∼30. This implies that 75–90 independent samples are obtained while the fastest second-order method converges. After convergence, the correlation lengths indicate an improvement factor of about 3.0 fewer gradient computations for meshes of 2563 cells. In the considered cosmological scenario, the traditional leap-frog scheme turns out to outperform higher order integration schemes only when considering lower dimensional problems, e.g. meshes with 643 cells. This gain in computational efficiency can help to go towards a full Bayesian analysis of the cosmological large-scale structure for upcoming galaxy surveys.


Author(s):  
Andrew Jacobsen ◽  
Matthew Schlegel ◽  
Cameron Linke ◽  
Thomas Degris ◽  
Adam White ◽  
...  

This paper investigates different vector step-size adaptation approaches for non-stationary online, continual prediction problems. Vanilla stochastic gradient descent can be considerably improved by scaling the update with a vector of appropriately chosen step-sizes. Many methods, including AdaGrad, RMSProp, and AMSGrad, keep statistics about the learning process to approximate a second order update—a vector approximation of the inverse Hessian. Another family of approaches use meta-gradient descent to adapt the stepsize parameters to minimize prediction error. These metadescent strategies are promising for non-stationary problems, but have not been as extensively explored as quasi-second order methods. We first derive a general, incremental metadescent algorithm, called AdaGain, designed to be applicable to a much broader range of algorithms, including those with semi-gradient updates or even those with accelerations, such as RMSProp. We provide an empirical comparison of methods from both families. We conclude that methods from both families can perform well, but in non-stationary prediction problems the meta-descent methods exhibit advantages. Our method is particularly robust across several prediction problems, and is competitive with the state-of-the-art method on a large-scale, time-series prediction problem on real data from a mobile robot.


1961 ◽  
Vol 3 (1) ◽  
pp. 28-44 ◽  
Author(s):  
W. G. V. Rosser
Keyword(s):  

1986 ◽  
Vol 59 (2) ◽  
pp. 683-693 ◽  
Author(s):  
Samuel E. Krug ◽  
Edgar F. Johns

The second-order factors structure of the 16 Personality Factor Questionnaire (16PF) was cross-validated on a large sample ( N = 17,381) of normal males and females. Subjects were sampled across a broad range of ages, socioeconomic levels, education, geographic location, and ethnicity. The purposes of this investigation were (1) to provide a precise definition of 16PF second-order factor structure, (2) to shed additional light on the nature of two second-order factors that have been previously identified but described as “unstable” and “poorly reproduced,” and (3) to determine the extent to which common factor estimation formulas for men and women would prove satisfactory for applied work. The resulting solutions were congruent with previous studies and showed a high degree of simple structure. Support was provided for one, but not both, of the two additional second-order factors. Results also supported the use of simplified estimation formulas for applied use.


Sign in / Sign up

Export Citation Format

Share Document