Three-Dimensional Micromechanics Analysis of Strain Energy Release Rate Distribution along Delamination Crack Front in FRP

Author(s):  
Hiroshi Tanaka ◽  
Yoshikazu Nakai
1964 ◽  
Vol 86 (4) ◽  
pp. 693-697 ◽  
Author(s):  
R. G. Forman ◽  
A. S. Kobayashi

This paper presents theoretical studies on the axial rigidities in strips with circular and elliptical perforations and subjected to uniaxial tension. Greenspan’s original derivations on these axial rigidities [2] were improved by using the elasticity solutions by Howland [6] and Ishida [7] for infinite strips with circular and elliptical perforations, respectively. Finally, the correction factors for centrally notched strips subjected to uniaxial tension were rederived from the above results following the energy approach by Irwin and Kies [3].


2003 ◽  
Vol 18 (10) ◽  
pp. 2379-2386 ◽  
Author(s):  
Dov Sherman ◽  
Ilan Be'ery

We report on the exact shape of a propagating crack in a plate with a high width/thickness ratio and subjected to bending deformation. Fracture tests were carried out with brittle solids—single crystal, polycrystalline, and amorphous. The shape of the propagating crack was determined from direct temporal crack length measurements and from the surface perturbations generated during rapid crack propagation. The shape of the crack profile was shown to be quarter-elliptical with a straight, long tail; the governing parameter of the ellipse axes is the specimen's thickness at most length of crack propagation. Universality of the crack front shape is demonstrated. The continuum mechanics approach applicable to two-dimensional problems was used in this three-dimensional problem to calculate the quasistatic strain energy release rate of the propagating crack using the formulations of the dynamic energy release rate along the crack loci. Knowledge of the crack front shape in the current geometry and loading configuration is important for practical and scientific aspects.


Author(s):  
Arash Kheyraddini Mousavi ◽  
Seyedhamidreza Alaie ◽  
Maheshwar R. Kashamolla ◽  
Zayd Chad Leseman

An analytical Mixed Mode I & II crack propagation model is used to analyze the experimental results of stiction failed micro cantilevers on a rigid substrate and to determine the critical strain energy release rate (adhesion energy). Using nonlinear beam deflection theory, the shape of the beam being peeled off of a rigid substrate can be accurately modeled. Results show that the model can fit the experimental data with an average root mean square error of less than 5 ran even at relatively large deflections which happens in some MEMS applications. The effects of surface roughness and/or debris are also explored and contrasted with perfectly (atomically) flat surfaces. Herein it is shown that unlike the macro-scale crack propagation tests, the surface roughness and debris trapped between the micro cantilever and the substrate can drastically effect the energy associated with creating unit new surface areas and also leads to some interesting phenomena. The polysilicon micro cantilever samples used, were fabricated by SUMMIT V™ technology in Sandia National Laboratories and were 1000 μm long, 30 μm wide and 2.6 μm thick.


2021 ◽  
Vol 1046 ◽  
pp. 23-28
Author(s):  
Victor Iliev Rizov

The present paper deals with an analytical study of the time-dependent delamination in a multilayered inhomogeneous cantilever beam with considering of the loading history. The multilayered beam exhibits creep behaviour that is treated by using a non-linear stress-strain-time relationship. The material properties are continuously distributed along the thickness and length of the layers. The external loading is applied in steps in order to describe the loading history. The analysis reveals that during each step of the loading, the strain energy release rate increases with time. The influences of crack length and location on the time-dependent strain energy release rate are also investigated.


Sign in / Sign up

Export Citation Format

Share Document