propagating crack
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
V.M. Kiiko

Abstract. A correlation is established between the length of the propagating crack in electrically conductive flat specimens and the change in the field of electric potentials over the surface of the specimen when an electric current is passed through it. The experimental data correspond to the analytical solution in a two-dimensional formulation obtained by means of a conformal mapping. Work can be attributed to the field of converting mechanical values into electrical ones. This transformation simplifies the process of recording mechanical processes and provides a convenient form of their control. The work is aimed at automatic control of the process of fracture of electrically conductive materials.


Author(s):  
Peng Xu ◽  
Ren-shu Yang ◽  
Yang Guo ◽  
Cheng Chen ◽  
Yiqiang Kang

2021 ◽  
Vol 11 (7) ◽  
pp. 3013
Author(s):  
Jianxin He ◽  
Liang Liu ◽  
Haihua Yang ◽  
M. R. M. Aliha ◽  
Hamid Reza Karimi

Asphalt mixture is a type of textured composite material made of aggregates and mastic part. Overall strength and failure behavior in such materials depends on the texture or heterogeneity of the mixture. In particular, the crack growth mechanism from the tip of the pre-crack is significantly affected by the texture of the asphalt composite and environmental conditions. The crack can extend through the soft mastic, tight aggregates or interface of the mastic/aggregates. In this research, by performing some fracture tests on a typical asphalt mixture with different test specimens under mode I, mixed mode I/II and mixed mode I/III, the fracture resistance and trajectory of propagating crack is studied at two low and medium temperatures (i.e., −15 and +15 °C). The load bearing capacity and the fracture resistance of the tested asphalt samples increases by decreasing the temperature. It is also shown that a significant part of fracture plane passes through the soft mastic and boundary of aggregates (i.e., the interface of aggregates and mastic) and only about 10–15% of the fracture surface of the propagating crack passes via the tight aggregates by breaking them. This percentage decreases for mode II and III loading conditions and higher testing temperatures. Compared to brittle and isotropic materials, the fracture path of the asphalt mixture shows more deviation, and this deviation increases for those mixtures containing coarser aggregates in the ligament and tested under medium temperature conditions.


2020 ◽  
Vol 148 ◽  
pp. 103497
Author(s):  
Kuan-Xin Huang ◽  
Guo-Shuang Shui ◽  
Yi-Ze Wang ◽  
Yue-Sheng Wang

2020 ◽  
Vol 10 (13) ◽  
pp. 4419
Author(s):  
Peng Xu ◽  
Renshu Yang ◽  
Yang Guo ◽  
Zhicheng Guo

This study uses a dynamic caustic technique to study the crack propagation in a medium containing an unfilled joint under blasting. The results show that for the medium containing a vertical unfilled joint, the reflected dilatational wave from the joint tends to suppress both the K I d and the velocity of the opposite propagating crack. However, for the medium containing an oblique joint, the reflected wave from the joint increases K II d , and induces the opposite propagating crack deflect from its original path. Compared with the medium with a vertical joint, the wing cracks are more easy to initiate at the oblique joint where a significant stress concentration is formed under the diffraction of the blast wave. Combined with numerical results, it is found that the wing crack deflects in the clockwise direction when the shear stress was negative, and it turns to counterclockwise when the shear stress was positive.


2019 ◽  
Vol 218 ◽  
pp. 106548 ◽  
Author(s):  
Fuminori Yanagimoto ◽  
Kazuki Shibanuma ◽  
Toshiyuki Matsumoto ◽  
Katsuyuki Suzuki

2019 ◽  
Vol 11 (1) ◽  
pp. 41-68 ◽  
Author(s):  
Chukwuemeke William Isaac

The dynamic oblique crushing of circular thin-walled tubes with the presence of non-propagating crack was investigated numerically. The material considered was strain rate sensitive with crack located at the distal end of the tube. Major crashworthiness parameters were obtained and the analysis of the structural response for idealized and finite element crushed thin-walled tubes was also carried out. The study shows that crack initiation on energy absorbing tubes increase their crushing force efficiency under oblique impact, decrease their crushing force efficiency under axial impact and reduce their crashworthiness performance such as the energy absorption capacity and specific energy absorption under axial and oblique impact. Results of the crashworthiness parameters, deformation modes, damage morphology, stress–strain relations, absorption energy characteristics and crushing force-displacement history were obtained. Furthermore, the numerical study reveals both the desirable and undesirable consequence of crack on the overall crashworthiness performance of energy absorbing circular thin-walled tubes.


Sign in / Sign up

Export Citation Format

Share Document