Dynamic Melt Rheometry Used to Study Degradation of Metallocene Polyethylene

Author(s):  
Scott H. Wasserman ◽  
George N. Foster ◽  
Douglas J. Yacka
2008 ◽  
Vol 47-50 ◽  
pp. 21-24
Author(s):  
C. Rosales ◽  
V. Contreras ◽  
M. Matos ◽  
R. Perera ◽  
N. Villarreal ◽  
...  

Polypropylene/polyamide-6 and polypropylene/metallocene polyethylene blends containing 2.5 phr of organophilic modified montmorillonite were prepared in a twin-screw extruder followed by injection molding. In order to compare, blends without layered clay were also made. Styreneethylene- butylene-styrene copolymer and polypropylene grafted with anhydride maleic were used as compatibilizers in the ternary blends and in the PP nanocomposite preparation, respectively. The presence of tactoids, intercalated and exfoliated structures was observed by TEM in some of the samples containing layered clay and modified PP materials. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in tensile moduli were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene exhibited better tensile toughness and lower tensile modulus, than those prepared with a nanocomposite of PP and polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends. Differential scanning calorimetry (DSC) showed that blends with a finer and homogeneously dispersed morphology determined by SEM, the PA component exhibited fractionated crystallization exotherms in the temperature range of 159-185°C. Also, nucleation of the PP component by PA phase and/or the layered clay was observed in the blends with PA as dispersed phase.


2013 ◽  
Vol 130 (4) ◽  
pp. 2399-2409 ◽  
Author(s):  
Sun-Mou Lai ◽  
Kun-Che Hung ◽  
Hui Cheng Kao ◽  
Liang-Chuan Liu ◽  
Xue Fen Wang

nano Online ◽  
2016 ◽  
Author(s):  
Wen-Chih Chen ◽  
Jung-Liang Liu ◽  
Sun-Mou Lai ◽  
Shi-Xian Tang ◽  
Horng Jer Tai ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 1762-1774 ◽  
Author(s):  
C. Rosales ◽  
V. Contreras ◽  
M. Matos ◽  
R. Perera ◽  
N. Villarreal ◽  
...  

In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.


Sign in / Sign up

Export Citation Format

Share Document