Thermal and Tensile Properties of PP Nanocomposite Blends

2008 ◽  
Vol 47-50 ◽  
pp. 21-24
Author(s):  
C. Rosales ◽  
V. Contreras ◽  
M. Matos ◽  
R. Perera ◽  
N. Villarreal ◽  
...  

Polypropylene/polyamide-6 and polypropylene/metallocene polyethylene blends containing 2.5 phr of organophilic modified montmorillonite were prepared in a twin-screw extruder followed by injection molding. In order to compare, blends without layered clay were also made. Styreneethylene- butylene-styrene copolymer and polypropylene grafted with anhydride maleic were used as compatibilizers in the ternary blends and in the PP nanocomposite preparation, respectively. The presence of tactoids, intercalated and exfoliated structures was observed by TEM in some of the samples containing layered clay and modified PP materials. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in tensile moduli were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene exhibited better tensile toughness and lower tensile modulus, than those prepared with a nanocomposite of PP and polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends. Differential scanning calorimetry (DSC) showed that blends with a finer and homogeneously dispersed morphology determined by SEM, the PA component exhibited fractionated crystallization exotherms in the temperature range of 159-185°C. Also, nucleation of the PP component by PA phase and/or the layered clay was observed in the blends with PA as dispersed phase.

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 184 ◽  
Author(s):  
Hung-Ming Lin ◽  
Kartik Behera ◽  
Mithilesh Yadav ◽  
Fang-Chyou Chiu

Polyamide 6 (PA6)/poly(vinylidene fluoride) (PVDF) blend-based nanocomposites were successfully prepared using a twin screw extruder. Carbon nanotube (CNT) and organo-montmorillonite (30B) were used individually and simultaneously as reinforcing nanofillers for the immiscible PA6/PVDF blend. Scanning electron micrographs showed that adding 30B reduced the dispersed domain size of PVDF in the blend, and CNT played a vital role in the formation of a quasi-co-continuous PA6-PVDF morphology. Transmission electron microscopy observation revealed that both fillers were mainly located in the PA6 matrix phase. X-ray diffraction patterns showed that the presence of 30B facilitated the formation of γ-form PA6 crystals in the composites. Differential scanning calorimetry results indicated that the crystallization temperature of PA6 increased after adding CNT into the blend. The inclusion of 30B retarded PA6 nucleation (γ-form crystals growth) upon crystallization. The Young’s and flexural moduli of the blend increased after adding CNT and/or 30B. 30B exhibited higher enhancing efficiency compared with CNT. The composite with 2 phr 30B exhibited 21% higher Young’s modulus than the blend. Measurements of the rheological properties confirmed the development of a pseudo-network structure in the CNT-loaded composites. Double percolation morphology in the PA6/PVDF blend was achieved with the addition of CNT.


2008 ◽  
Vol 8 (4) ◽  
pp. 1762-1774 ◽  
Author(s):  
C. Rosales ◽  
V. Contreras ◽  
M. Matos ◽  
R. Perera ◽  
N. Villarreal ◽  
...  

In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.


2014 ◽  
Vol 92 ◽  
pp. 133-137
Author(s):  
Shoichi Oyama ◽  
Kenji Tamura ◽  
Takafumi Kitazawa ◽  
Kazumi Minagawa ◽  
Akihiko Yamagishi

The Expandable Mica was Modified with a Melamine Hydrochloride Salt at 60°C for Three Hours. the Resulting Melamine-Modified Mica (MME) was Melt-Kneaded with Polyamide 6 (PA6) Using a Twin-Screw Kneader at 250°C. the Addition of MME to the PA6 Matrix Resulted in a Finer Dispersion, as Evidenced by the Disappearance of the (001) Reflections in the XRD Patterns and TEM Image. the Tensile Modulus of MME/PA Nanocomposite (including 4.1 Mass % Mica) Increased by Approximately 1.8 Times Compared with that of the Neat PA6, which can be Attributed to the Increasing of the Exfoliated Silicate Platelets and the Dominating of the γ Crystalline Form in the Nanocomposites.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 682 ◽  
Author(s):  
Thandi P. Gumede ◽  
Adriaan S. Luyt ◽  
Agnieszka Tercjak ◽  
Alejandro J. Müller

In this work, the 70/30 and 30/70 w/w polycaprolactone (PCL)/polybutylene succinate (PBS) blends and their corresponding PCL/PBS/(polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) masterbatch) nanocomposites were prepared in a twin-screw extruder. The nanocomposites contained 1.0 and 4.0 wt% MWCNTs. The blends showed a sea-island morphology typical of immiscible blends. For the nanocomposites, three phases were formed: (i) The matrix (either PCL- or PBS-rich phase depending on the composition), (ii) dispersed polymer droplets of small size (either PCL- or PBS-rich phase depending on the composition), and (iii) dispersed aggregates of tens of micron sizes identified as PC/MWCNTs masterbatch. Atomic force microscopy (AFM) results showed that although most MWCNTs were located in the PC dispersed phase, some of them migrated to the polymer matrix. This is due to the partial miscibility and intimate contact at the interfaces between blend components. Non-isothermal differential scanning calorimetry (DSC) scans for the PCL/PBS blends showed an increase in the crystallization temperature (Tc) of the PCL-rich phase indicating a nucleation effect caused by the PBS-rich phase. For the nanocomposites, there was a decrease in Tc values. This was attributed to a competition between two effects: (1) The partial miscibility of the PC-rich and the PCL-rich and PBS-rich phases, and (2) the nucleation effect of the MWCNTs. The decrease in Tc values indicated that miscibility was the dominating effect. Isothermal crystallization results showed that the nanocomposites crystallized slower than the neat blends and the homopolymers. The introduction of the masterbatch generally increased the thermal conductivity of the blend nanocomposites and affected the mechanical properties.


Author(s):  
J Li ◽  
Y F Zhang

Polyamide 6 (PA6)-filled polytetrafluoroethylene (PTFE) at different compositions has been successfully prepared in a corotating twin screw extruder where PTFE acts as the polymer matrix and PA6 as the dispersed phase. The morphology and impact properties of these blends were investigated using a scanning electron microscope. The presence of PA6 particles dispersed in the PTFE continuous phase exhibited a coarse morphology. Increasing PA6 contents in the blend improved the impact properties at weak deformation. It was found that the interfacial adhesion played an important role in the creation of an interphase that was formed by the interaction between the PTFE and PA6. This induced an improvement in impact properties. In addition, the optimum impact properties were obtained when the content of PA6 is 30 vol%.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4774-4791

Waste from the processing of hardwood and coniferous wood generated in the timber industries is difficult to dispose of and can cause considerable environmental impacts, such as soil and groundwater contamination. In this context, composites with varying concentrations of polypropylene, maleated polypropylene, and particulate Eucalyptus and Pinus waste were produced in a twin screw extruder and injection molded as test bodies for tensile and flexural tests. The morphology of the composites was investigated via scanning electron microscopy. The thermal properties were identified through differential scanning calorimetry. The tensile and flexural results for the two waste formulations indicated that the addition of vegetable fillers increased the modulus of elasticity and bending, and the compatibilizer provided increased resistance to stress and maximum deflection. The scanning electron micrographs illustrated the wetting of the cellulosic charge by the thermoplastic polymer with the compatibilizer, which corroborated the possible occurrence of an esterification reaction and hydrogen bonding interactions in the matrix-particle interface. The incorporation of waste in the composite resulted in the reduction of the degree of crystallinity of polypropylene, regardless of the use of the compatibilizer. This was explained by the barrier capacity of the charge, which prevented the growth of the crystals.


2019 ◽  
Vol 39 (1) ◽  
pp. 7-10
Author(s):  
Kinga Mencel ◽  
Łukasz Kemnitz

Abstract The nanocomposites of polyamide 6 (PA6) with halloysite nanotubes (HNT) were prepared by extrusion using co-rotating twin-screw extruder and then the standard test specimens were injected using a screw injection moulding machine. The content of HNT in the nanocomposites was 5 or 10 weight percent. The heat treatment of unmodified PA6 and nanocomposites was carried out in silicone oil in temp. 150±2°C. The samples were annealed for 3 hours and then cooled at a rate of 4 K/min. Differential scanning calorimetry (DSC) causes annealing to increase the crystallinity of the polyamide matrix. After an annealing treatment a nanocomposite with better mechanical properties was obtained. Halloysite nanotubes in polyamide matrix play the role of a nucleating agent.


2019 ◽  
Vol 32 (6) ◽  
pp. 655-661
Author(s):  
Jianan Yao ◽  
Weizhou Yao ◽  
Yangyang Gu ◽  
Jindong Zhang ◽  
Youhai Yu ◽  
...  

Chopped polyimide (PI) fiber-reinforced polyether ether ketone (PEEK) composites with different fiber content (0%, 10%, 20%, and 30%) were prepared via melt extrusion using a twin-screw extruder. The impact strength of these composites significantly improved from 4.9 kJ m−2 to 9.3 kJ m−2 with the increase of the PI fiber content from 0% to 30%. Tensile strength, tensile modulus, and flexural strength also increased with the increase in PI fiber content. In addition, the heat deflection temperature increased significantly from 160°C to 318°C. The results of the dynamic mechanical analysis revealed that the storage modulus increased considerably. The relationship between mold temperature and composite properties was investigated, and using differential scanning calorimetry, it was shown that the increase in mold temperature improved the degree of polymer crystallization and the bonding capability of the fiber and resin interface. As a result, the mechanical properties of the composite material were improved.


2018 ◽  
Vol 237 ◽  
pp. 01006
Author(s):  
Chao Hu ◽  
Xinwen Liao ◽  
Qinghua Qin ◽  
Gang Wang

In this research, the hierarchical carbon nanotube/carbon fibre/polyethylene (CNT/CF/PE) composites were fabricated via the conventional twin-screw extrusion technique. For this multi-component composite, 1% wt CNTs were uniformly coated onto the surface of CF by using spray coating method. The effect of CNTs and CFs as reinforcing fillers on the mechanical properties was investigated through mechanical test and Scanning Electron Microscopy (SEM) characterization. It has been found that with the content increase of CFs (i.e. 0% wt, 5% wt, 10% wt, 15% wt, 20% wt, 25% wt), both of tensile strength and tensile modulus exhibited an upward trend. Moreover, CF/PE composites with CNT coatings have higher mechanical performance than the counterparts without CNT coatings. The SEM results demonstrated that with the spray coating of CNTs onto CFs, the surface roughness of CFs was increased, thus contributing to the improvement of interfacial bonding between the reinforcement (CFs) and the matrix (PE).


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 986 ◽  
Author(s):  
Itziar Otaegi ◽  
Nora Aramburu ◽  
Alejandro Müller ◽  
Gonzalo Guerrica-Echevarría

Biobased polyamide 410 (PA410)/multiwall carbon nanotube (CNT) nanocomposites (NCs) were obtained by melt-mixing in a twin screw extruder a Polyamide 6 (PA6)-based masterbatch (with 15 wt % CNT content) with neat PA410. Directly mixed PA410/CNT NCs were also obtained for comparison purposes. Transmision Electronic Microscopy (TEM) observation and conductivity measurements demonstrated that a good dispersion of CNTs was obtained, which was probably induced by the full miscibility between PA410 and PA6 (in the concentration range employed here), as ascertained by Differential Scanning Calorimetry (DSC) tests. As a result, the PA410/PA6/CNT NCs showed superior mechanical behaviour (≈10% Young’s modulus increase with a 4 wt % CNT content) than the binary PA410/CNT NCs (≈5% Young’s modulus increase with a 6 wt % CNT content), as well as superior electrical behaviour, with maximum conductivity values of approximately three orders of magnitude higher than in the binary PA410/CNT system, and lower percolation threshold values (0.65 wt % CNT content vs. 3.98 wt % CNT). The good dispersion and enhanced mechanical and electrical properties of these novel biobased nanocomposites, broadens their potential applications, such as electrical and electronics (E&E) or automotive industries.


Sign in / Sign up

Export Citation Format

Share Document