heat distortion temperature
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 36 (5) ◽  
pp. 577-585
Author(s):  
K. Tao ◽  
K. Yamada ◽  
S. Higashi ◽  
K. Kago ◽  
H. Takeshita ◽  
...  

Abstract This work examined the relationship between changes in molecular orientation and the heat resistance (heat distortion temperature) of polystyrene injection moldings following heat treatment below the glass transition temperature. Molecular orientation around the core layer of the injection moldings was found to be relaxed by the heat treatment. Also, in the untreated specimen, the molecular orientation around the core layer was relaxed from 60°C during the heating process. Since loss tangent (tanδ) also increased from 60°C during the heating process in the untreated specimen, it was considered that the increase in tanδ occurred with the molecular motion due to the relaxation of molecular orientation from 60°C. After the heat treatment, because of the relaxation of molecular orientation around the core layer by the heat treatment, the relaxation of molecular orientation from 60 °C did not occur during the subsequent heating process, and the tanδ of the polymer between 60 and 90 °C was decreased. Because this decrease in the tanδ over this temperature range improved the heat resistance of the material, the enhanced heat resistance by the heat treatment was attributed to the suppression of the relaxation of molecular orientation from 60°C during the heating process. Furthermore, relaxation of molecular orientation and enthalpy relaxation were related to improvement in the heat resistance.



Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2780
Author(s):  
Luca Magazzini ◽  
Sara Grilli ◽  
Seif Eddine Fenni ◽  
Alessandro Donetti ◽  
Dario Cavallo ◽  
...  

Poly(glycolic acid) (PGA) holds unique properties, including high gas barrier properties, high tensile strength, high resistance to common organic solvents, high heat distortion temperature, high stiffness, as well as fast biodegradability and compostability. Nevertheless, this polymer has not been exploited at a large scale due to its relatively high production cost. As such, the combination of PGA with other bioplastics on one hand could reduce the material final cost and on the other disclose new properties while maintaining its “green” features. With this in mind, in this work, PGA was combined with two of the most widely applied bioplastics, namely poly(l-lactide) (PLLA) and poycaprolactone (PCL), using the melt blending technique, which is an easily scalable method. FE-SEM measurements demonstrated the formation of PGA domains whose dimensions depended on the polymer matrix and which turned out to decrease by diminishing the PGA content in the mixture. Although there was scarce compatibility between the blend components, interestingly, PGA was found to affect both the thermal properties and the degradation behavior of the polymer matrices. In particular, concerning the latter property, the presence of PGA in the blends turned out to accelerate the hydrolysis process, particularly in the case of the PLLA-based systems.



Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2019
Author(s):  
Dimakatso Makwakwa ◽  
Vincent Ojijo ◽  
Jayita Bandyopadhyay ◽  
Suprakas Sinha Ray

This work investigates the effects of modification of polylactide (PLA) using dicumyl peroxide (DCP) as a crosslinker and Joncryl as a chain extender on boehmite distribution. The PLA/boehmite (PLA/BA) composites at various concentrations were prepared via a twin-screw extruder. Transmission electron microscopy showed more agglomerations of BA particles when Joncryl and DCP were added individually to the PLA matrix, with lesser agglomeration upon simultaneous addition of DCP and Joncryl, which led to an enhancement of 10.7% of the heat distortion temperature and 8.8% of the modulus. The existence of fine dispersed BA particles in the BA3 sample improved the cold crystallization by 4 °C. Moreover, the maximum reinforcing effect in increasing the storage modulus of the prepared system was observed upon concurrent addition of DCP and Joncryl, with minimum reinforcing effect upon individual addition of DCP and Joncryl. In general, a bio-based PLA composite base BA with enhanced properties was successfully prepared for various applications.



Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1377
Author(s):  
Laura Sisti ◽  
Grazia Totaro ◽  
Annamaria Celli ◽  
Loris Giorgini ◽  
Simone Ligi ◽  
...  

In situ intercalative polymerization has been investigated as a strategic way to obtain poly(propylene 2,5-furandicarboxylate) (PPF) and poly(hexamethylene 2,5-furandicarboxylate) (PHF) nanocomposites with different graphene types and amounts. Graphene (G) has been dispersed in surfactant stabilized water suspensions. The loading range in composites was 0.25–0.75 wt %. For the highest composition, a different type of graphene (XT500) dispersed in 1,3 propanediol, containing a 6% of oxidized graphene and without surfactant has been also tested. The results showed that the amorphous PPF is able to crystallize during heating scan in DSC and graphene seems to affect such capability: G hinders the polymer chains in reaching an ordered state, showing even more depressed cold crystallization and melting. On the contrary, such hindering effect is absent with XT500, which rather induces the opposite. Concerning the thermal stability, no improvement has been induced by graphene, even if the onset degradation temperatures remain high for all the materials. A moderate enhancement in mechanical properties is observed in PPF composite with XT500, and especially in PHF composite, where a significative increase of 10–20% in storage modulus E’ is maintained in almost all the temperature range. Such an increase is also reflected in a slightly higher heat distortion temperature. These preliminary results can be useful in order to further address the field of application of furan-based polyesters; in particular, they could be promising as packaging materials.



Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 728
Author(s):  
Sangyoon Park ◽  
Sarinthip Thanakkasaranee ◽  
Hojun Shin ◽  
Youngsoo Lee ◽  
Guman Tak ◽  
...  

To improve the dimensional thermal stability of polyethylene terephthalate (PET), a poly(ethylene glycol 1,4-cyclohexane dimethylene (CHDM) isosorbide (ISB) terephthalate) (PEICT) known as ECOZEN®T110 (EZT) was introduced into PET using a melt blending technique. The miscibility, morphology, and thermal properties of the PET/EZT samples were investigated. The introduction of amorphous EZT into semi-crystalline PET increased the glass transition temperature (Tg) but decreased the crystallinity, which could be related to the transesterification reaction. By adding EZT contents up to 20%, the PET/EZT samples showed a single Tg, which indicated the miscibility between PET and EZT. However, two Tg values were observed in the PET/EZT samples with higher EZT contents (30–70%), indicating partial miscibility. This may have been due to the slightly different rheological and thermodynamic parameters that were affected by a higher ratio of bulky (rigid ISB and ductile CHDM) groups in EZT. However, the heat distortion temperature of the PET/EZT samples remarkably increased, which indicated that the dimensional stability was truly enhanced. Although the crystallinity of the PET/EZT samples decreased with increasing EZT content, the tensile strength and Young’s modulus decreased slightly. Based on these results, the as-prepared PET/EZT samples with high dimensional stability can be used as a high-temperature polymeric material in various applications.



Pollution from plastic materials has become a severe problem all around the world. Plastics, due to their long lasting properties are utilized majorly in almost every application from packaging, electrical appliances, vehicle parts etc. the major concern related to plastics are that they are non-degradable and hence are harmful for environment. Several researches have been done in utilizing plastic material in addition with some other materials to form a composite material which has better properties than pure substances. Plastics with glass fibres are one such of composition where the new material formed can be used for several day to day applications. Hence the present work focuses on, manufacturing of a composite material from recycled glass fibres and recycled polypropylene co-polymers (PPCP) in varying ratios. A total of six specimens are made and results for Heat deflection temperature (HDT) 70:30 has the best results compared to other compositions. Results are also calculated for shear strength for the same composition of specimen, which shows better results compared to wood material (plywood). This experiment provides a solution for utilizing the waste plastic material found in waste lands and scrapyards which continuously pollute the environment.



The need for bio degradable material in all the fields including automobile and mechanical field is growing due to the awareness and polution and enviromenat safety norms. To satisfy this need needs, alternative natural product with similar kind of properties has to be identify . Where these natural products attribute can be enhanced using some processing techniques and by adding suitable chemicals. Composite materials are the one which is ruling our world and the need for them is marginally high and we need to find new enhanced matrices which have much more good qualities than the old one and find the alternate for them in their existence. The hybrid composite manufacturing has been wide range of investigations. The composites have superior properties like light weight, low density, stiffness, and better mechanical properties. The present work aims on mechanical and thermal behaviours of GKG, GAG, and KGA fibre reinforced epoxy composites. Hand layup method used for fabricate hybrid composite laminates. The thermogravimetric analysis, heat distortion temperature test are carried out to find its thermal stability. For testing and analysis, the specimens are cut as per ASTM standards.



2019 ◽  
Vol 39 (5) ◽  
pp. 407-414 ◽  
Author(s):  
Xueqiang Zhang ◽  
Jun Zhang

AbstractAcrylonitrile-styrene-acrylic (ASA) terpolymer has a typical core-shell structure with poly(butyl acrylate) (PBA) as the soft core and styrene-acrylonitrile (SAN) copolymer as the hard shell. The impact behavior of poly(vinyl chloride) (PVC)/ASA binary blends with various ASA terpolymer contents was systematically investigated at three different temperatures (23°C, 0°C, and –30°C). With the addition of 30 phr ASA terpolymer, the impact strength of the blends increased by almost 45 times at 23°C and 29 times at 0°C compared with the neat PVC, respectively. Herein, ASA terpolymer particles were related to each other to form a percolation group and the stress field around the ASA particles was connected with each other, thereby more effectively served as the stress concentrators, exhibiting the highest toughening efficiency. In addition, the significantly improved toughness could also be attributed to the special core-shell structure of ASA terpolymer, as well as, a good miscibility between the PVC matrix and the SAN shell of the ASA terpolymer. However, the decreasing temperature limited the flexibility of the PBA chain, resulting in the insignificant role of ASA terpolymer in toughening PVC at –30°C. Moreover, the improvement in the toughness of the blends did not sacrifice its heat distortion temperature.



2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.



Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1363 ◽  
Author(s):  
T. Mokhena ◽  
J. Sefadi ◽  
E. Sadiku ◽  
M. John ◽  
M. Mochane ◽  
...  

Over the past decades, research has escalated on the use of polylactic acid (PLA) as a replacement for petroleum-based polymers. This is due to its valuable properties, such as renewability, biodegradability, biocompatibility and good thermomechanical properties. Despite possessing good mechanical properties comparable to conventional petroleum-based polymers, PLA suffers from some shortcomings such as low thermal resistance, heat distortion temperature and rate of crystallization, thus different fillers have been used to overcome these limitations. In the framework of environmentally friendly processes and products, there has been growing interest on the use of cellulose nanomaterials viz. cellulose nanocrystals (CNC) and nanofibers (CNF) as natural fillers for PLA towards advanced applications other than short-term packaging and biomedical. Cellulosic nanomaterials are renewable in nature, biodegradable, eco-friendly and they possess high strength and stiffness. In the case of eco-friendly processes, various conventional processing techniques, such as melt extrusion, melt-spinning, and compression molding, have been used to produce PLA composites. This review addresses the critical factors in the manufacturing of PLA-cellulosic nanomaterials by using conventional techniques and recent advances needed to promote and improve the dispersion of the cellulosic nanomaterials. Different aspects, including morphology, mechanical behavior and thermal properties, as well as comparisons of CNC- and CNF-reinforced PLA, are also discussed.



Sign in / Sign up

Export Citation Format

Share Document