Manganese Superoxide Dismutase and Oxidative Stress Modulation

2015 ◽  
pp. 87-130 ◽  
Author(s):  
Guilherme Bresciani ◽  
Ivana Beatrice Mânica da Cruz ◽  
Javier González-Gallego
2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dan Shan ◽  
Samuel Kofi Arhin ◽  
Junzhao Zhao ◽  
Haitao Xi ◽  
Fan Zhang ◽  
...  

Background. Deficient spermatozoon motility is one of the main causes of male infertility. However, there are still no accurate and effective treatments in a clinical setting for male asthenospermia. Exploring the genes and mechanism of asthenospermia has become one of the hot topics in reproductive medicine. Our aim is to study the effect of SLRIP on human spermatozoon motility and oxidative stress. Methods. Sperm samples were collected including a normospermia group (60 cases) and an asthenospermia group (50 cases). SLIRP protein expression in spermatozoa was examined by western blotting, and relative mRNA expression of SLIRP in spermatozoa was quantified by reverse transcription polymerase chain reaction. Levels of reactive oxygen species (ROS), adenosine triphosphate (ATP) content, and the activity of manganese superoxide dismutase (MnSOD) in spermatozoa were also measured. Results. The mRNA level and protein expression of SLIRP in the asthenospermia group were significantly reduced compared with those in the normospermia group. The ROS active oxygen level in the asthenospermia group significantly increased; however, the ATP content decreased significantly as well as the activity of MnSOD. Conclusion. SLIRP regulates human male fertility, and SLIRP and sperm progressive motility are positively correlated. The expression of SLIRP is declined, oxidative damage is increased, and energy metabolism is decreased in spermatozoa of asthenospermia patients compared to normospermia participants.


2013 ◽  
Vol 304 (3) ◽  
pp. F257-F267 ◽  
Author(s):  
Nirmala Parajuli ◽  
Lee Ann MacMillan-Crow

Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hypothesized that MnSOD knockdown in the kidney augments renal damage during renal I/R. Using newly characterized kidney-specific MnSOD knockout (KO) mice the extent of renal damage and oxidant production after I/R was evaluated. These KO mice (without I/R) exhibited low expression and activity of MnSOD in the distal nephrons, had altered renal morphology, increased oxidant production, but surprisingly showed no alteration in renal function. After I/R the MnSOD KO mice showed similar levels of injury to the distal nephrons when compared with wild-type mice. Moreover, renal function, MnSOD activity, and tubular cell death were not significantly altered between the two genotypes after I/R. Interestingly, MnSOD KO alone increased autophagosome formation, mitochondrial biogenesis, and DNA replication/repair within the distal nephrons. These findings suggest that the chronic oxidative stress as a result of MnSOD knockdown induced multiple coordinated cell survival signals including autophagy and mitochondrial biogenesis, which protected the kidney against the acute oxidative stress following I/R.


Sign in / Sign up

Export Citation Format

Share Document