Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential

Author(s):  
Margaret E. Magaletta ◽  
Richard Siller ◽  
René Maehr
Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Betty R Lawton ◽  
Corine Martineau ◽  
Julie Ann Sosa ◽  
Sanziana Roman ◽  
Courtney E Gibson ◽  
...  

Abstract Differentiation of pluripotent stem cells into functional parathyroid-like cells would accelerate development of important therapeutic options for subjects with parathyroid-related disorders, from the design and screening of novel pharmaceutical agents to the development of durable cellular therapies. We have established a highly reproducible directed differentiation approach leading to PTH-expressing cells from human embryonic stem cells and induced pluripotent stem cells. We accomplished this through the comparison of multiple different basal media, the inclusion of the CDK inhibitor PD0332991 in both definitive endoderm and anterior foregut endoderm stages, and a 2-stage pharyngeal endoderm series. This is the first protocol to reproducibly establish PTH-expressing cells from human pluripotent stem cells and represents a first step toward the development of functional parathyroid cells with broad applicability for medicinal and scientific investigation.


BioEssays ◽  
2012 ◽  
Vol 35 (3) ◽  
pp. 281-298 ◽  
Author(s):  
Divya Rajamohan ◽  
Elena Matsa ◽  
Spandan Kalra ◽  
James Crutchley ◽  
Asha Patel ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (17) ◽  
pp. 3513-3523 ◽  
Author(s):  
Dan S. Kaufman

Abstract Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide remarkable cellular platforms to better understand human hematopoiesis and to develop clinically applicable hematopoietic cell–based therapies. Over the past decade, hESCs have been used to characterize molecular and cellular mechanisms underpinning the differentiation of hematopoietic progenitors and mature, functional hematopoietic cells. These advances are now poised to lead to clinical translation of hESC- and iPSC-derived hematopoietic cells for novel therapies in the next few years. On the basis of areas of recent success, initial clinical use of hematopoietic cells derived from human pluripotent stem cells will probably be in the areas of transfusion therapies (erythrocytes and platelets) and immune therapies (natural killer cells). In contrast, efficient development and isolation of hematopoietic stem cells capable of long-term, multilineage engraftment still remains a significant challenge. Technical, safety, and regulatory concerns related to clinical applications of human PSCs must be appropriately addressed. However, proper consideration of these issues should facilitate and not inhibit clinical translation of new therapies. This review outlines the current status of hematopoietic cell development and what obstacles must be surmounted to bring hematopoietic cell therapies from human PSCs from “bench to bedside.”


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 326-LB
Author(s):  
LARRY SAI WENG LOO ◽  
ADRIAN TEO ◽  
SOUMITA GHOSH ◽  
ANDREAS ALVIN PURNOMO SOETEDJO ◽  
LINH NGUYEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document