pharyngeal endoderm
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ramada R. Khasawneh ◽  
Ralf Kist ◽  
Rachel Queen ◽  
Rafiqul Hussain ◽  
Jonathan Coxhead ◽  
...  

Abstract Background Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. Results In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9–/– mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9–/– mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9–/– mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9–/– mice. Conclusions Msx1 haploinsufficiency mitigates the arch artery defects in Pax9–/– mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9–/– mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.


2021 ◽  
pp. 119202
Author(s):  
Hyejee Na ◽  
Jangwon Park ◽  
Haewon Jeon ◽  
Sil Jin ◽  
Chong Pyo Choe

2021 ◽  
Author(s):  
Ramada R. Khasawneh ◽  
Ralf Kist ◽  
Jürgen E Schneider ◽  
Timothy J Mohun ◽  
Heiko Peters ◽  
...  

Abstract Background Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. Results In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9−/− mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9−/− mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9−/− mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9−/− mice. Conclusions Msx1 haploinsufficiency mitigates the arch artery defects in Pax9−/− mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9−/− mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Essa Tawfeeq

Thornwaldt cysts occur in the midline bursa of the nasopharynx above the upper border of the superior constrictor muscle. They represent a communication between notochord remnants and the pharyngeal endoderm. It is usually asymptomatic unless an infection or obstruction occurs, then, a Thornwaldt's cyst might develop. It is relatively uncommon, with a prevalence rate of 0.2% to 4%. Due to its nonspecific symptoms, physician often misdiagnose thornwaldt cyst. It is usually diagnosed as an incidental finding on MRI. Surgical excision is the definitive treatment. This paper describes a case of thornwaldt cyst in a 39 years old gentleman presented with neck stiffness. It also includes a literature review that aids in the clinical suspicion, prevalence, diagnosis, and treatment of thornwald cyst.


Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev194738
Author(s):  
Kazunori Okada ◽  
Shinji Takada

ABSTRACTPharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Betty R Lawton ◽  
Corine Martineau ◽  
Julie Ann Sosa ◽  
Sanziana Roman ◽  
Courtney E Gibson ◽  
...  

Abstract Differentiation of pluripotent stem cells into functional parathyroid-like cells would accelerate development of important therapeutic options for subjects with parathyroid-related disorders, from the design and screening of novel pharmaceutical agents to the development of durable cellular therapies. We have established a highly reproducible directed differentiation approach leading to PTH-expressing cells from human embryonic stem cells and induced pluripotent stem cells. We accomplished this through the comparison of multiple different basal media, the inclusion of the CDK inhibitor PD0332991 in both definitive endoderm and anterior foregut endoderm stages, and a 2-stage pharyngeal endoderm series. This is the first protocol to reproducibly establish PTH-expressing cells from human pluripotent stem cells and represents a first step toward the development of functional parathyroid cells with broad applicability for medicinal and scientific investigation.


2020 ◽  
Vol 21 (16) ◽  
pp. 5765
Author(s):  
Marta Figueiredo ◽  
Rita Zilhão ◽  
Hélia Neves

The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions.


2020 ◽  
Vol 7 (2) ◽  
pp. 20
Author(s):  
Catherine A. Stothard ◽  
Silvia Mazzotta ◽  
Arjun Vyas ◽  
Jurgen E. Schneider ◽  
Timothy J. Mohun ◽  
...  

The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development.


Sign in / Sign up

Export Citation Format

Share Document