Physical Accuracy Leads to Biological Relevance: Best Practices For Simulating Ligand-Gated Ion Channels Interacting With General Anesthetics

Author(s):  
Sruthi Murlidaran ◽  
Grace Brannigan
2000 ◽  
Vol 93 (4) ◽  
pp. 1095-1101 ◽  
Author(s):  
Tomohiro Yamakura ◽  
R. Adron Harris

Background Ligand-gated ion channels are considered to be potential general anesthetic targets. Although most general anesthetics potentiate the function of gamma-aminobutyric acid receptor type A (GABAA), the gaseous anesthetics nitrous oxide and xenon are reported to have little effect on GABAA receptors but inhibit N-methyl-d-aspartate (NMDA) receptors. To define the spectrum of effects of nitrous oxide and xenon on receptors thought to be important in anesthesia, the authors tested these anesthetics on a variety of recombinant brain receptors. Methods The glycine, GABAA, GABA receptor type C (GABAC), NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, 5-hydroxytryptamine3 (5-HT3), and nicotinic acetylcholine (nACh) receptors were expressed in Xenopus oocytes and effects of nitrous oxide and xenon, and as equipotent concentrations of isoflurane and ethanol, were studied using the two-electrode voltage clamp. Results Nitrous oxide (0.58 atmosphere [atm]) and xenon (0.46 atm) exhibited similar effects on various receptors. Glycine and GABAA receptors were potentiated by gaseous anesthetics much less than by isoflurane, whereas nitrous oxide inhibited GABAC receptors. Glutamate receptors were inhibited by gaseous anesthetics more markedly than by isoflurane, but less than by ethanol. NMDA receptors were the most sensitive among glutamate receptors and were inhibited by nitrous oxide by 31%. 5-HT3 receptors were slightly inhibited by nitrous oxide. The nACh receptors were inhibited by gaseous and volatile anesthetics, but ethanol potentiated them. The sensitivity was different between alpha4beta2 and alpha4beta4 nACh receptors; alpha4beta2 receptors were inhibited by nitrous oxide by 39%, whereas alpha4beta4 receptors were inhibited by 7%. The inhibition of NMDA and nACh receptors by nitrous oxide was noncompetitive and was slightly different depending on membrane potentials for NMDA receptors, but not for nACh receptors. Conclusions Nitrous oxide and xenon displayed a similar spectrum of receptor actions, but this spectrum is distinct from that of isoflurane or ethanol. These results suggest that NMDA receptors and nACh receptors composed of beta2 subunits are likely targets for nitrous oxide and xenon.


1995 ◽  
Vol 82 (1) ◽  
pp. 276-287 ◽  
Author(s):  
Douglas E. Raines ◽  
Saffron E. Rankin ◽  
Keith W. Miller

Background General anesthetics are thought to induce anesthesia through their actions on ligand-gated ion channels. One such channel, the nicotinic acetylcholine receptor (nAcChoR), can be found in different subtypes in the central nervous system and at the periphery in the neuromuscular junction. The latter subtype of the nAcChoR is a useful model for examining interactions between general anesthetics and ligand-gated ion channels, because it can be isolated and purified in sufficient quantities to allow for biophysical and biochemical studies. This study examines the actions of general anesthetics on agonist-induced conversion of the nAcChoR to inactive desensitized conformational states. Methods Nicotinic acetylcholine receptor membranes were purified from the electric organ of Torpedo nobiliana. Agonist-induced desensitization was characterized from the time-dependent increase in fluorescence intensity that results from the binding of the fluorescent acetylcholine analog, Dns-C6-Cho, to the nAcChoR. Results Mixing Dns-C6-Cho with nAcChoR-rich membranes results in an increase in fluorescence that is characterized by four rate processes. Concentrations of isoflurane and butanol, which range from subclinical to toxic increase the rates of the third and fourth components of fluorescence, corresponding to fast and slow desensitization, respectively. At concentrations that are twice their EC50s for anesthesia, isoflurane, butanol, chloroform, methanol, and cyclopentanemethanol increase the apparent rates of fast and slow desensitization by an average of 92 +/- 22% and 108 +/- 22%, respectively. Conclusions The concentration range over which general anesthetics modify the kinetics of nAcChoR desensitization is similar to those reported for anesthetic actions on the GABAA receptor. Thus, the nAcChoR, like other members of this superfamily, is a sensitive target of general anesthetics.


2008 ◽  
Vol 107 (2) ◽  
pp. 486-493 ◽  
Author(s):  
Andrew Jenkins ◽  
Ingrid A. Lobo ◽  
Diane Gong ◽  
James R. Trudell ◽  
Ken Solt ◽  
...  

Plant Biology ◽  
2010 ◽  
Vol 12 ◽  
pp. 80-93 ◽  
Author(s):  
P. Dietrich ◽  
U. Anschütz ◽  
A. Kugler ◽  
D. Becker

Sign in / Sign up

Export Citation Format

Share Document