Paleostress Inversion Techniques

2022 ◽  
1990 ◽  
Vol 45 (3) ◽  
pp. 345-355
Author(s):  
J. Helgesen ◽  
I. Brevik ◽  
E. Berg
Keyword(s):  

2021 ◽  
pp. 1-19
Author(s):  
Abdul Qayyum ◽  
Jorik Willem Poessé ◽  
Nuretdin Kaymakci ◽  
Cornelis G. Langereis ◽  
Erhan Gülyüz ◽  
...  

2019 ◽  
Vol 38 (6) ◽  
pp. 474-479
Author(s):  
Mohamed G. El-Behiry ◽  
Said M. Dahroug ◽  
Mohamed Elattar

Seismic reservoir characterization becomes challenging when reservoir thickness goes beyond the limits of seismic resolution. Geostatistical inversion techniques are being considered to overcome the resolution limitations of conventional inversion methods and to provide an intuitive understanding of subsurface uncertainty. Geostatistical inversion was applied on a highly compartmentalized area of Sapphire gas field, offshore Nile Delta, Egypt, with the aim of understanding the distribution of thin sands and their impact on reservoir connectivity. The integration of high-resolution well data with seismic partial-angle-stack volumes into geostatistical inversion has resulted in multiple elastic property realizations at the desired resolution. The multitude of inverted elastic properties are analyzed to improve reservoir characterization and reflect the inversion nonuniqueness. These property realizations are then classified into facies probability cubes and ranked based on pay sand volumes to quantify the volumetric uncertainty in static reservoir modeling. Stochastic connectivity analysis was also applied on facies models to assess the possible connected volumes. Sand connectivity analysis showed that the connected pay sand volume derived from the posterior mean of property realizations, which is analogous to deterministic inversion, is much smaller than the volumes generated by any high-frequency realization. This observation supports the role of thin interbed reservoirs in facilitating connectivity between the main sand units.


2008 ◽  
Vol 680 (1) ◽  
pp. 827-827 ◽  
Author(s):  
B. T. Welsch ◽  
W. P. Abbett ◽  
M. L. DeRosa ◽  
G. H. Fisher ◽  
M. K. Georgoulis ◽  
...  

Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


Sign in / Sign up

Export Citation Format

Share Document