Micro and Nanolignin in Aqueous Dispersions and Polymers

2022 ◽  
Keyword(s):  
Author(s):  
Vitthal S. Kulkarni ◽  
Wayne H. Anderson ◽  
Rhoderick E. Brown

The biological significance of the sphingomyelins (SM) and monoglycosylated sphingolipids like galactosylceramides (GalCer) are well documented Our recent investigation showed tubular bilayers in the aqueous dispersions of N-nervonoyl GalCer [N-(24:lΔ15,cls) GalCer] (a major fatty acyl moiety of natural GalCer). To determine the influence of lipid head groups on the resulting mesophasic morphology, we investigated microstructural self-assemblies of N-nervonoyl-SM [N-(24:1 Δ15,cls) SM; the second most abundant sphingomyelin in mammalian cell membranes], 1- palmitoyl-2-nervonoyl phosphatidylcholine [PNPC] (the lipid species with the same acyl chain configuration as in N-(24: 1) GalCer) and also compared it with egg-SM by freeze-fracture EM.Procedures for synthesizing and purifying N-(24:1) GalCer, N-(24:1) SM, and PNPC have been reported . Egg-SM was purchased from Avanti Polar Lipids, Alabaster AL. All lipids were >99% pure as checked by thin layer chromatography. Lipid dispersions were prepared by hydrating dry lipid with phosphate buffer (pH 6.6) at 80-90°C (3-5 min), vigorously vortexing (1 min) and repeating this procedure for three times prior to three freeze-thaw cycles.


2020 ◽  
Author(s):  
Daniel Bůžek ◽  
Slavomír Adamec ◽  
Kamil Lang ◽  
Jan Demel

<div><p>UiO-66 is a zirconium-based metal-organic framework (MOF) that has numerous applications. Our group recently determined that UiO-66 is not as inert in aqueous dispersions as previously reported in the literature. The present work therefore assessed the behaviour of UiO-66 in buffers: 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), 4-(2-hydroxyethyl)piperazine-1-ethane sulfonic acid (HEPES), N-ethylmorpholine (NEM) and phosphate buffer (PB), all of which are commonly used in many UiO-66 applications. High pressure liquid chromatography and inductively coupled plasma mass spectrometry were used to monitor degradation of the MOF. In each buffer, the terephthalate linker was released to some extent, with a more pronounced leaching effect in the saline forms of these buffers. The HEPES buffer was found to be the most benign, whereas NEM and PB should be avoided at any concentration as they were shown to rapidly degrade the UiO-66 framework. Low concentration TRIS buffers are also recommended, although these offer minimal buffer capacity to adjust pH. Regardless of the buffer used, rapid terephthalate release was observed, indicating that the UiO-66 was attacked immediately after mixing with the buffer. In addition, the dissolution of zirconium, observed in some cases, intensified the UiO-66 decomposition process. These results demonstrate that sensitive analytical techniques have to be used to monitor the release of MOF components so as to quantify the stabilities of these materials in liquid environments.</p></div>


2020 ◽  
Vol 65 (9) ◽  
pp. 1475-1483
Author(s):  
S. A. Alekseeva ◽  
I. V. Baranets ◽  
V. N. Beresnev ◽  
T. A. Nadervel ◽  
A. D. Kryuchkov ◽  
...  

LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111082
Author(s):  
Barbora Lapčíková ◽  
Lubomír Lapčík ◽  
Tomáš Valenta ◽  
Petr Majar ◽  
Kristýna Ondroušková

1964 ◽  
Vol 239 (12) ◽  
pp. 4066-4072 ◽  
Author(s):  
Morris B. Abramson ◽  
Robert Katzman ◽  
Clarence E. Wilson ◽  
Harry P. Gregor

1972 ◽  
Vol 13 (2) ◽  
pp. 253-255
Author(s):  
Norman D. Weiner ◽  
Papavadee Noomnont ◽  
Alvin Felmeister

2018 ◽  
Vol 13 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Zoila Rosa Nieto Galván ◽  
Lucas de Souza Soares ◽  
Eber Antonio Alves Medeiros ◽  
Nilda de Fátima Ferreira Soares ◽  
Afonso Mota Ramos ◽  
...  

Langmuir ◽  
2015 ◽  
Vol 31 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Tamás Szabó ◽  
Viktor Tóth ◽  
Endre Horváth ◽  
László Forró ◽  
Istvan Szilagyi

Sign in / Sign up

Export Citation Format

Share Document