water diffusivity
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
Jerzy Majka ◽  
Tomasz Rogoziński ◽  
Wiesław Olek

AbstractDynamic water vapor sorption experiments were carried out using beech wood dust (from untreated and thermally modified wood) of two-particle sizes, (< 25 and 80–250 µm), obtained from abrasive sanding. Sorption isotherms were parameterized with the GAB and GDW models. Dust from thermally modified wood had significantly lower equilibrium moisture content compared to dust from untreated material, due to the reduction in primary sorption sites in treated material. The observed changes were quantified by the coefficients of the GAB and GDW models. Thermal modification and size of wood dust particles had no influence on binding energy of water molecules being linked to the secondary sorption sites. Water diffusivity decreased significantly with increasing moisture content, but only for monolayer sorption. For higher moisture content values, water diffusivity was practically independent of moisture content. These results were found for untreated and thermally modified material as well as for both dust size fractions. The influence of thermal modification on water diffusivity was unclear, which is attributed to the diffusion model, which represents dust particles as spheres and assumes instant hygroscopic equilibrium. Overall, this study indicates that the effectiveness of filtration processes likely depends strongly on sorption and diffusion properties of wood dust only at low moisture contents within the hygroscopic range.


2021 ◽  
pp. 1-9
Author(s):  
Francesco Sammartino ◽  
Rachel Marsh ◽  
Fang-Cheng Yeh ◽  
Anders Sondergaard ◽  
Barbara Kelly Changizi ◽  
...  

OBJECTIVE Globus pallidus (GP) lesioning improves motor symptoms of Parkinson’s disease (PD) and is occasionally associated with nonmotor side effects. Although these variable clinical effects were shown to be site-specific within the GP, the motor and nonmotor subregions have not been distinguished radiologically in patients with PD. The GP was recently found to have a distinct radiological signature on diffusion MRI (dMRI), potentially related to its unique cellular content and organization (or tissue architecture). In this study, the authors hypothesize that the magnitude of water diffusivity, a surrogate for tissue architecture, will radiologically distinguish motor from nonmotor GP subregions in patients with PD. They also hypothesize that the therapeutic focused ultrasound pallidotomy lesions will preferentially overlap the motor subregion. METHODS Diffusion MRI from healthy subjects (n = 45, test-retest S1200 cohort) and PD patients (n = 33) was parcellated based on the magnitude of water diffusivity in the GP, as measured orientation distribution function (ODF). A clustering algorithm was used to identify GP parcels with distinct ODF magnitude. The individual parcels were used as seeds for tractography to distinguish motor from nonmotor subregions. The locations of focused ultrasound lesions relative to the GP parcels were also analyzed in 11 patients with PD. RESULTS Radiologically, three distinct parcels were identified within the GP in healthy controls and PD patients: posterior, central, and anterior. The posterior and central parcels comprised the motor subregion and the anterior parcel was classified as a nonmotor subregion based on their tractography connections. The focused ultrasound lesions preferentially overlapped with the motor subregion (posterior more than central). The hotspots for motor improvement were localized in the posterior GP parcel. CONCLUSIONS Using a data-driven approach of ODF-based parcellation, the authors radiologically distinguished GP motor subregions in patients with PD. This method can aid stereotactic targeting in patients with PD undergoing surgical treatments, especially focused ultrasound ablation.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012204
Author(s):  
M Abuku ◽  
S Hiranuma ◽  
S Wakiya ◽  
D Ogura ◽  
T Fumoto

Abstract Takase Stone Buddhas is one of the important old stone buddha sculptures curved into the inner wall of a cave in Oita, Japan. It is located in the cave curved into the cliff of a hill of volcanic tuff. In general, because the cave is currently protected from rain and direct solar radiation by the roof shelter and waterproof treatment, the Buddhas is well conserved and no currently ongoing weathering can be clearly observed. However, because of a high ground water level, there is a concern in the influence of water evaporation at and near the surface of the stone buddhas and the wall of the cave on their deterioration. In the past, we conducted a long-term field survey of conservation environment to obtain yearly data set of the conservation environment that can be used as input of numerical simulations of heat and water transport in the material. In this paper, we report measurement data of the ground water level as well as the liquid water diffusivity of the tuff stone that significantly affects the conservation condition. We also performed numerical analyses on heat and moisture transport in the tuff stone layer and stone buddhas. The simulation results show that the conservation condition of Takase stone Buddha strongly depends on the anisotropy of liquid water diffusivity of the tuff stone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karolina Garczyńska ◽  
Heiko Tzschätzsch ◽  
Sanam Assili ◽  
Anja A. Kühl ◽  
Akvile Häckel ◽  
...  

Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE). In this work, DWI and MRE examinations were performed in a 0.5-Tesla compact scanner to investigate longitudinal changes in water diffusivity, stiffness and viscosity of ex-vivo rat livers for up to 20 h post-mortem (pm). The effect of blood on biophysical parameters was examined in 13 non-perfused livers (containing blood, NPLs) and 14 perfused livers (blood washed out, PLs). Changes in cell shape, cell packing and cell wall integrity were characterized histologically. In all acquisitions, NPLs presented with higher shear-wave speed (c), higher shear-wave penetration rate (a) and smaller apparent-diffusion-coefficients (ADCs) than PL. Time-resolved analysis revealed three distinct phases: (i) an initial phase (up to 2 h pm) with markedly increased c and a and reduced ADCs; (ii) an extended phase with relatively stable values; and (iii) a degradation phase characterized by significant increases in a (10 h pm in NPLs and PLs) and ADCs (10 h pm in NPLs, 13 h pm in PLs). Histology revealed changes in cell shape and packing along with decreased cell wall integrity, indicating tissue degradation in NPLs and PLs 10 h pm. Taken together, our results demonstrate that the biophysical properties of fresh liver tissue rapidly change within 2 h pm, which seems to be an effect of both cytotoxic edema and vascular blood content. Several hours later, disruption of cell walls resulted in higher water diffusivity and wave penetration. These results reveal the individual contributions of vascular components and cellular integrity to liver elastography and provide a biophysical, imaging-based fingerprint of liver tissue degradation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yan Gao ◽  
Kai Chang ◽  
Xuguang Xing ◽  
Jiaping Liang ◽  
Nian He ◽  
...  

PurposeTraditional laboratory measurements of soil water diffusivity (D) and soil water retention curve (SWRC) are always time-consuming and labor-intensive. Therefore, this paper aims to present a simple and robust test method for determining D and SWRC without reducing accuracy.Design/methodology/approachIn this study, a D model of unsaturated soil was established based on Gardner–Russo model and then a combination of Gardner–Russo model with one-dimensional horizontal absorption method to obtain n and a parameters of Gardner–Russo model. One-dimensional horizontal absorption experiments on loam, silt loam and sandy clay loam were conducted to obtain the relationships between measured infiltration rate and cumulative infiltration with wetting front distance. Based on the obtained relationships, the measured infiltration data from the one-dimensional horizontal absorption tests were used to calculate n and a parameters and further constructing D and SWRC.FindingsBoth the calculated D and SWRC inversed from the infiltration data were in good agreement with the measured ones that obtained from the traditional horizontal absorption method and the centrifuge method, respectively. Error analysis indicated that only the infiltration data are enough to reliably synchronously determine D and SWRC.Originality/valueA simple and robust method is proposed for synchronous determination of soil water diffusivity and water retention curve.


Author(s):  
Lamiaa Mohamed Bassam Hashem ◽  
Sherihan W. Y. Gareer ◽  
Aya Mohamed Bassam Hashem ◽  
Sherihan Fakhry ◽  
Yasmin Mounir Tohamey

Abstract Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has always been a problem solver in troublesome breast lesions. Despite its many advantages, the encountered low specificity results in unnecessary biopsies. Diffusion-weighted MRI (DW-MRI) is a well-established technique that helps in characterizing breast lesions according to their water diffusivity. So this work aimed to assess the diagnostic performance of DW-MRI in troublesome breast lesions and see if it can replace DCE-MRI study. Results In our prospective study, we included 86 patients with mammography and/or ultrasound-detected 90 probably benign or probably malignant (BIRADS 3 or 4) breast lesions. Among the studied cases, 49/90 lesions were benign, and 41/90 were malignant. Combined analysis of morphological and kinetic findings in DCE-MRI had achieved the highest sensitivity of 95.1%. DW-MRI alone was less sensitive (73.2%) yet more specific (83.7%) than DCE-MRI (77.6%). Diagnostic accuracy of DCE-MRI was higher (85.6%) as compared to DW-MRI which was (78.9%). Conclusion DCE-MRI is the cornerstone in the workup of troublesome breast lesions. DW-MRI should not be used as supplementary tool unless contrast administration is contraindicated. Combining both DCE-MRI and DW-MRI is the ultimate technique for better lesion evaluation.


Author(s):  
Alexandra V. Bayles ◽  
Julia M. Fisher ◽  
Connor S. Valentine ◽  
Arash Nowbahar ◽  
Matthew E. Helgeson ◽  
...  

LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111082
Author(s):  
Barbora Lapčíková ◽  
Lubomír Lapčík ◽  
Tomáš Valenta ◽  
Petr Majar ◽  
Kristýna Ondroušková

Sign in / Sign up

Export Citation Format

Share Document