scholarly journals Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays

2010 ◽  
Vol 396 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Amde Selassie Shifera ◽  
John A. Hardin
Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
S Vogl ◽  
P Picker ◽  
N Fakhrudin ◽  
A Atanasov ◽  
E Heiß ◽  
...  

BioTechniques ◽  
1996 ◽  
Vol 20 (5) ◽  
pp. 914-917 ◽  
Author(s):  
Christiaan H. Roelant ◽  
David A. Burns ◽  
Winfried Scheirer

2003 ◽  
Vol 8 (6) ◽  
pp. 676-684 ◽  
Author(s):  
Bart W. Nieuwenhuijsen ◽  
Youping Huang ◽  
Yuren Wang ◽  
Fernando Ramirez ◽  
Gary Kalgaonkar ◽  
...  

To study the biology of regulators of G-protein signaling (RGS) proteins and to facilitate the identification of small molecule modulators of RGS proteins, the authors recently developed an advanced yeast 2-hybrid (YTH) assay format for GαZand RGS-Z1. Moreover, they describe the development of a multiplexed luciferase-based assay that has been successfully adapted to screen large numbers of small molecule modulators of protein-protein interactions. They generated and evaluated 2 different luciferase reporter gene systems for YTH interactions, a Gal4 responsive firefly luciferase reporter gene and a Gal4 responsive Renilla luciferase reporter gene. Both the firefly and Renilla luciferase reporter genes demonstrated a 40-to 50-fold increase in luminescence in strains expressing interacting YTH fusion proteins versus negative control strains. Because the firefly and Renilla luciferase proteins have different substrate specificity, the assays were multiplexed. The multiplexed luciferase-based YTH platform adds speed, sensitivity, simplicity, quantification, and efficiency to YTH high-throughput applications and therefore greatly facilitates the identification of small molecule modulators of protein-protein interactions as tools or potential leads for drug discovery efforts.


2021 ◽  
Vol 22 (13) ◽  
pp. 6927
Author(s):  
Maša Kenda ◽  
Jan Vegelj ◽  
Barbara Herlah ◽  
Andrej Perdih ◽  
Přemysl Mladěnka ◽  
...  

Firefly luciferase is susceptible to inhibition and stabilization by compounds under investigation for biological activity and toxicity. This can lead to false-positive results in in vitro cell-based assays. However, firefly luciferase remains one of the most commonly used reporter genes. Here, we evaluated isoflavonoids for inhibition of firefly luciferase. These natural compounds are often studied using luciferase reporter-gene assays. We used a quantitative structure–activity relationship (QSAR) model to compare the results of in silico predictions with a newly developed in vitro assay that enables concomitant detection of inhibition of firefly and Renilla luciferases. The QSAR model predicted a moderate to high likelihood of firefly luciferase inhibition for all of the 11 isoflavonoids investigated, and the in vitro assays confirmed this for seven of them: daidzein, genistein, glycitein, prunetin, biochanin A, calycosin, and formononetin. In contrast, none of the 11 isoflavonoids inhibited Renilla luciferase. Molecular docking calculations indicated that isoflavonoids interact favorably with the D-luciferin binding pocket of firefly luciferase. These data demonstrate the importance of reporter-enzyme inhibition when studying the effects of such compounds and suggest that this in vitro assay can be used to exclude false-positives due to firefly or Renilla luciferase inhibition, and to thus define the most appropriate reporter gene.


2011 ◽  
Vol 16 (7) ◽  
pp. 786-793 ◽  
Author(s):  
Marie-Cecile Didiot ◽  
Sergio Serafini ◽  
Martin J. Pfeifer ◽  
Frederick J. King ◽  
Christian N. Parker

High-throughput screening assays with multiple readouts enable one to monitor multiple assay parameters. By capturing as much information about the underlying biology as possible, the detection of true actives can be improved. This report describes an extension to standard luciferase reporter gene assays that enables multiple parameters to be monitored from each sample. The report describes multiplexing luciferase assays with an orthogonal readout monitoring cell viability using reduction of resazurin. In addition, this technical note shows that by using the luciferin substrate in live cells, an assay time course can be recorded. This enables the identification of nonactive or unspecific compounds that act by inhibiting luciferase, as well as compounds altering gene expression or cell growth.


2016 ◽  
Vol 15 (2) ◽  
pp. 244-249 ◽  
Author(s):  
Huateng Zhang ◽  
Haixiu Bai ◽  
Tianyu Jiang ◽  
Zhao Ma ◽  
Yanna Cheng ◽  
...  

Some specific ions could selectively inhibit firefly luciferase while having a negligible effect on renilla luciferase, which may be used in the improved dual luciferase reporter gene assay.


Sign in / Sign up

Export Citation Format

Share Document