Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases

2014 ◽  
Vol 444 ◽  
pp. 60-66 ◽  
Author(s):  
Theo T. Nikiforov
2003 ◽  
Vol 23 (8) ◽  
pp. 3008-3012 ◽  
Author(s):  
Robert E. Johnson ◽  
José Trincao ◽  
Aneel K. Aggarwal ◽  
Satya Prakash ◽  
Louise Prakash

ABSTRACT Although DNA polymerase η (Polη) and other Y family polymerases differ in sequence and function from classical DNA polymerases, they all share a similar right-handed architecture with the palm, fingers, and thumb domains. Here, we examine the role in Saccharomyces cerevisiae Polη of three conserved residues, tyrosine 64, arginine 67, and lysine 279, which come into close contact with the triphosphate moiety of the incoming nucleotide, in nucleotide incorporation. We find that mutational alteration of these residues reduces the efficiency of correct nucleotide incorporation very considerably. The high degree of conservation of these residues among the various Y family DNA polymerases suggests that these residues are also crucial for nucleotide incorporation in the other members of the family. Furthermore, we note that tyrosine 64 and arginine 67 are functionally equivalent to the deoxynucleotide triphosphate binding residues arginine 518 and histidine 506 in T7 DNA polymerase, respectively.


2020 ◽  
Vol 2 (4) ◽  
pp. 89-92
Author(s):  
Muhammad Amir ◽  
Sabeera Afzal ◽  
Alia Ishaq

Polymerases were revealed first in 1970s. Most important to the modest perception the enzyme responsible for nuclear DNA replication that was pol , for DNA repair pol and for mitochondrial DNA replication pol  DNA construction and renovation done by DNA polymerases, so directing both the constancy and discrepancy of genetic information. Replication of genome initiate with DNA template-dependent fusion of small primers of RNA. This preliminary phase in replication of DNA demarcated as de novo primer synthesis which is catalyzed by specified polymerases known as primases. Sixteen diverse DNA-synthesizing enzymes about human perspective are devoted to replication, reparation, mutilation lenience, and inconsistency of nuclear DNA. But in dissimilarity, merely one DNA polymerase has been called in mitochondria. It has been suggest that PrimPol is extremely acting the roles by re-priming DNA replication in mitochondria to permit an effective and appropriate way replication to be accomplished. Investigations from a numeral of test site have significantly amplified our appreciative of the role, recruitment and regulation of the enzyme during DNA replication. Though, we are simply just start to increase in value the versatile roles that play PrimPol in eukaryote.


2008 ◽  
Vol 1 (2) ◽  
pp. 162-170 ◽  
Author(s):  
A. Amoroso ◽  
E. Crespan ◽  
U. Wimmer ◽  
U. Hubscher ◽  
G. Maga

1993 ◽  
Vol 58 (s1) ◽  
pp. 120-121
Author(s):  
E. Shirokova ◽  
A. Shipitsin ◽  
E. Kusnetsova ◽  
L. Victorova ◽  
A. Krayevsky

Sign in / Sign up

Export Citation Format

Share Document