deoxynucleotide triphosphate
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 1)

Oncogene ◽  
2021 ◽  
Author(s):  
Xiaoning Wu ◽  
Elena Seraia ◽  
Stephanie B. Hatch ◽  
Xiao Wan ◽  
Daniel V. Ebner ◽  
...  

AbstractWe recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 839
Author(s):  
Isabella A. T. M. Ferreira ◽  
J. Zachary Porterfield ◽  
Ravindra K. Gupta ◽  
Petra Mlcochova

Macrophages are the first line of defence against invading pathogens. They play a crucial role in immunity but also in regeneration and homeostasis. Their remarkable plasticity in their phenotypes and function provides them with the ability to quickly respond to environmental changes and infection. Recent work shows that macrophages undergo cell cycle transition from a G0/terminally differentiated state to a G1 state. This G0-to-G1 transition presents a window of opportunity for HIV-1 infection. Macrophages are an important target for HIV-1 but express high levels of the deoxynucleotide-triphosphate hydrolase SAMHD1, which restricts viral DNA synthesis by decreasing levels of dNTPs. While the G0 state is non-permissive to HIV-1 infection, a G1 state is very permissive to HIV-1 infection. This is because macrophages in a G1 state switch off the antiviral restriction factor SAMHD1 by phosphorylation, thereby allowing productive HIV-1 infection. Here, we explore the macrophage cell cycle and the interplay between its regulation and permissivity to HIV-1 infection.


2019 ◽  
Vol 12 (3) ◽  
pp. 129 ◽  
Author(s):  
Michela Asperti ◽  
Luca Cantamessa ◽  
Simone Ghidinelli ◽  
Magdalena Gryzik ◽  
Andrea Denardo ◽  
...  

Ribonucleotide reductase (RR) is the rate-limiting enzyme that controls the deoxynucleotide triphosphate synthesis and it is an important target of cancer treatment, since it is expressed in tumor cells in proportion to their proliferation rate, their invasiveness and poor prognosis. Didox, a derivative of hydroxyurea (HU), is one of the most potent pharmaceutical inhibitors of this enzyme, with low in vivo side effects. It inhibits the activity of the subunit RRM2 and deoxyribonucleotides (dNTPs) synthesis, and it seems to show iron-chelating activity. In the present work, we mainly investigated the iron-chelating properties of didox using the HA22T/VGH cell line, as a model of hepatocellular carcinoma (HCC). We confirmed that didox induced cell death and that this effect was suppressed by iron supplementation. Interestingly, cell treatments with didox caused changes of cellular iron content, TfR1 and ferritin levels comparable to those caused by the iron chelators, deferoxamine (DFO) and deferiprone (DFP). Chemical studies showed that didox has an affinity binding to Fe3+ comparable to that of DFO and DFP, although with slower kinetic. Structural modeling indicated that didox is a bidentated iron chelator with two theoretical possible positions for the binding and among them that with the two hydroxyls of the catechol group acting as ligands is the more likely one. The iron chelating property of didox may contribute to its antitumor activity not only blocking the formation of the tyrosil radical on Tyr122 (such as HU) on RRM2 (essential for its activity) but also sequestering the iron needed by this enzyme and to the cell proliferation.


Science ◽  
2017 ◽  
Vol 358 (6364) ◽  
pp. 797-802 ◽  
Author(s):  
Kumar Somyajit ◽  
Rajat Gupta ◽  
Hana Sedlackova ◽  
Kai John Neelsen ◽  
Fena Ochs ◽  
...  

DNA replication requires coordination between replication fork progression and deoxynucleotide triphosphate (dNTP)–generating metabolic pathways. We find that perturbation of ribonucleotide reductase (RNR) in humans elevates reactive oxygen species (ROS) that are detected by peroxiredoxin 2 (PRDX2). In the oligomeric state, PRDX2 forms a replisome-associated ROS sensor, which binds the fork accelerator TIMELESS when exposed to low levels of ROS. Elevated ROS levels generated by RNR attenuation disrupt oligomerized PRDX2 to smaller subunits, whose dissociation from chromatin enforces the displacement of TIMELESS from the replisome. This process instantly slows replication fork progression, which mitigates pathological consequences of replication stress. Thus, redox signaling couples fluctuations of dNTP biogenesis with replisome activity to reduce stress during genome duplication. We propose that cancer cells exploit this pathway to increase their adaptability to adverse metabolic conditions.


2011 ◽  
Vol 286 (38) ◽  
pp. 33158-33166 ◽  
Author(s):  
Ivan I. Vorontsov ◽  
George Minasov ◽  
Olga Kiryukhina ◽  
Joseph S. Brunzelle ◽  
Ludmilla Shuvalova ◽  
...  

Biochemistry ◽  
2008 ◽  
Vol 47 (46) ◽  
pp. 12118-12125 ◽  
Author(s):  
Shibani Dalal ◽  
Daniela Starcevic ◽  
Joachim Jaeger ◽  
Joann B. Sweasy

Sign in / Sign up

Export Citation Format

Share Document