Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest

2021 ◽  
Vol 700 ◽  
pp. 108774
Author(s):  
Jia-feng Tang ◽  
Guo-li Li ◽  
Tao Zhang ◽  
Yu-mei Du ◽  
Shi-ying Huang ◽  
...  
2015 ◽  
Vol 36 (9) ◽  
pp. 1113-1125 ◽  
Author(s):  
Qing-qing Zhang ◽  
Wen-juan Wang ◽  
Jun Li ◽  
Neng Yang ◽  
Gang Chen ◽  
...  

2015 ◽  
Vol 26 (7) ◽  
pp. 754-762 ◽  
Author(s):  
Sara Carpi ◽  
Stefano Fogli ◽  
Antonella Romanini ◽  
Mario Pellegrino ◽  
Barbara Adinolfi ◽  
...  

2016 ◽  
Vol 42 (4) ◽  
pp. 997-1005 ◽  
Author(s):  
Shi-Jun Zhao ◽  
Xian-Jun Wang ◽  
Qing-Jian Wu ◽  
Chao Liu ◽  
Da-Wei Li ◽  
...  

Drug Research ◽  
2020 ◽  
Vol 70 (12) ◽  
pp. 563-569
Author(s):  
Bahareh Mohammadi Jobani ◽  
Elham Mohebi ◽  
Nowruz Najafzadeh

Abstract Background Malignant melanoma is a common form of skin cancer that contains different cell types recognized by various cell surface markers. Dacarbazine-based combination chemotherapy is frequently used for the treatment of melanoma. Despite its potent anticancer properties, resistance to dacarbazine develops in malignant melanoma. Here, we aim to improve response to dacarbazine therapy by pretreatment with all-trans retinoic acid (ATRA) in CD117+ melanoma cells. Methods The CD117+ melanoma cells were sorted from A375 malignant melanoma cell line using magnetic-activated cell sorting (MACS). The cell viability was examined by cell proliferation assay (MTT). Apoptosis was determined by acridine orange/ ethidium bromide staining. Indeed, we performed flow cytometry to evaluate the cell cycle arrest. Results Here, the CD117+ melanoma cells were incubated with various concentrations of ATRA, dacarbazine, and their combination to determine IC50 values. We found that 20 µM ATRA treatment followed by dacarbazine was found to be more effective than dacarbazine alone. There was an indication that the combination of ATRA with dacarbazine (ATRA/dacarbazine) caused more apoptosis and necrosis in the melanoma cells (P<0.05). Furthermore, ATRA/dacarbazine treatment inhibited the cell at the G0/G1 phase, while dacarbazine alone inhibited the cells at S phase. Conclusion Collectively, combined treatment with ATRA and dacarbazine induced more apoptosis and enhanced the cell cycle arrest of CD117+ melanoma cells. These results suggested that ATRA increased the sensitivity of melanoma cells to the effect of dacarbazine.


2019 ◽  
Vol 11 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Li Sun ◽  
Qurat UI Ain ◽  
Ying-sheng Gao ◽  
Ghulam Jilany Khan ◽  
Sheng-tao Yuan ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 153303382096075
Author(s):  
Pihong Li ◽  
Luguang Liu ◽  
Xiangguo Dang ◽  
Xingsong Tian

Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.


Oncotarget ◽  
2016 ◽  
Vol 7 (16) ◽  
pp. 22409-22426 ◽  
Author(s):  
You-Cheng Hseu ◽  
Varadharajan Thiyagarajan ◽  
Hsiao-Tung Tsou ◽  
Kai-Yuan Lin ◽  
Hui-Jye Chen ◽  
...  

Leukemia ◽  
2019 ◽  
Vol 34 (5) ◽  
pp. 1315-1328 ◽  
Author(s):  
Alexandre Pichard ◽  
Sara Marcatili ◽  
Jihad Karam ◽  
Julie Constanzo ◽  
Riad Ladjohounlou ◽  
...  

AbstractSome patients with B-cell non-Hodkin lymphoma Lymphoma (NHL) become refractory to rituximab (anti-CD20 antibody) therapy associated with chemotherapy. Here, the effect of the anti-CD37 antibody-radionuclide conjugate lutetium-177 (177Lu)-lilotomab (Betalutin®) was investigated in preclinical models of NHL. In SCID mice bearing DOHH2 (transformed follicular lymphoma, FL) cell xenografts, 177Lu-lilotomab significantly delayed tumor growth, even at low activity (100 MBq/kg). In athymic mice bearing OCI-Ly8 (diffuse large B-cell lymphoma, DLBCL) or Ramos (Burkitt’s lymphoma) cell xenografts, 177Lu-lilotomab activity had to be increased to 500 MBq/kg to show a significant tumor growth delay. Clonogenic and proliferation assays showed that DOHH2 cells were highly sensitive to 177Lu-lilotomab, while Ramos cells were the least sensitive, and U2932 (DLBCL), OCI-Ly8, and Rec-1 (mantle cell lymphoma) cells displayed intermediate sensitivity. The strong 177Lu-lilotomab cytotoxicity observed in DOHH2 cells correlated with reduced G2/M cell cycle arrest, lower WEE-1- and MYT-1-mediated phosphorylation of cyclin-dependent kinase-1 (CDK1), and higher apoptosis. In agreement, 177Lu-lilotomab efficacy in vitro, in vivo, and in patient samples was increased when combined with G2/M cell cycle arrest inhibitors (MK-1775 and PD-166285). These results indicate that 177Lu-lilotomab is particularly efficient in treating tumors with reduced inhibitory CDK1 phosphorylation, such as transformed FL.


Sign in / Sign up

Export Citation Format

Share Document