pc3 cells
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 123)

H-INDEX

35
(FIVE YEARS 6)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 409
Author(s):  
Alicja Chrzanowska ◽  
Wioletta Olejarz ◽  
Grażyna Kubiak-Tomaszewska ◽  
Andrzej K. Ciechanowicz ◽  
Marta Struga

Purpose: To assess cytotoxic effect of ciprofloxacin conjugates with fatty acids on prostate cancer cells (LNCaP and DU-145) with different hormone sensitivity, based on previous promising results from the PC3 cells. Methods: Cytotoxicity were estimated using MTT and LDH tests, whereas its mechanisms were estimated by apoptosis and IL-6 assays. The intensity of proteins involved in lipid metabolism was determined using ML-CS assay. Results: The hormone insensitive DU-145 cells were more vulnerable than the hormone sensitive LNCaP cells. The IC50 values for oleic (4), elaidic (5) and docosahexaenoic acid (8) conjugates were 20.2 µM, 17.8 µM and 16.5 µM, respectively, in DU-145 cells, whereas in LNCaP cells IC50 exceeded 20 µM. The strong conjugate cytotoxicity was confirmed in the LDH test, the highest (70.8%) for compound (5) and 64.2% for compound (8) in DU-145 cells. This effect was weaker for LNCaP cells (around 60%). The cytotoxic effect of unconjugated ciprofloxacin and fatty acids was weaker. The early apoptosis was predominant in LNCaP while in DU-145 cells both early and late apoptosis was induced. The tested conjugates decreased IL-6 release in both cancer cell lines by almost 50%. Proteomic analysis indicated influence of the ciprofloxacin conjugates on lipid metabolic proteins in prostatic cancer. Conclusion: Our findings suggested the cytotoxic potential of ciprofloxacin conjugates with reduction in proteins involved in prostate cancer progress.


2022 ◽  
Vol 11 ◽  
Author(s):  
Qimei Lin ◽  
Jiasong Cao ◽  
Xiaoling Du ◽  
Kuo Yang ◽  
Yongmei Shen ◽  
...  

Treatment of patients with castration-resistant prostate cancer (CRPC) remains a major clinical challenge. We previously showed that estrogenic effects contribute to CRPC progression and are primarily caused by the increased endogenous estradiol produced via highly expressed aromatase. However, the mechanism of aromatase upregulation and its role in CRPC are poorly described. In this study, we report that HeyL is aberrantly upregulated in CRPC tissues, and its expression is positively correlated with aromatase levels. HeyL overexpression increased endogenous estradiol levels and estrogen receptor-α (ERα) transcriptional activity by upregulating CYP19A1 expression, which encodes aromatase, enhancing prostate cancer stem cell (PCSC) properties in PC3 cells. Mechanistically, HeyL bound to the CYP19A1 promoter and activated its transcription. HeyL overexpression significantly promoted bicalutamide resistance in LNCaP cells, which was reversed by the aromatase inhibitor letrozole. In PC3 cells, the HeyL-aromatase axis promoted the PCSC phenotype by upregulating autophagy-related genes, while the autophagy inhibitor chloroquine (CQ) suppressed the aromatase-induced PCSC phenotype. The activated HeyL-aromatase axis promoted PCSC autophagy via ERα-mediated estrogenic effects. Taken together, our results indicated that the HeyL-aromatase axis could increase endogenous estradiol levels and activate ERα to suppress PCSC apoptosis by promoting autophagy, which enhances the understanding of how endogenous estrogenic effects influence CRPC development.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 363
Author(s):  
Carolin Siech ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Timothy Grein ◽  
Marlon Sonnenburg ◽  
...  

Insulin-like growth factor-1 (IGF-1)-related signaling is associated with prostate cancer progression. Links were explored between IGF-1 and expression of integrin adhesion receptors to evaluate relevance for growth and migration. Androgen-resistant PC3 and DU145 and androgen-sensitive LNCaP and VCaP prostate cancer cells were stimulated with IGF-1 and tumor growth (all cell lines), adhesion and chemotaxis (PC3, DU145) were determined. Evaluation of Akt/mTOR-related proteins, focal adhesion kinase (FAK) and integrin α and β subtype expression followed. Akt knock-down was used to investigate its influence on integrin expression, while FAK blockade served to evaluate its influence on mTOR signaling. Integrin knock-down served to investigate its influence on tumor growth and chemotaxis. Stimulation with IGF-1 activated growth in PC3, DU145, and VCaP cells, and altered adhesion and chemotactic properties of DU145 and PC3 cells. This was associated with time-dependent alterations of the integrins α3, α5, αV, and β1, FAK phosphorylation and Akt/mTOR signaling. Integrin blockade or integrin knock-down in DU145 and PC3 cells altered tumor growth, adhesion, and chemotaxis. Akt knock-down (DU145 cells) cancelled the effect of IGF-1 on α3, α5, and αV integrins, whereas FAK blockade cancelled the effect of IGF-1 on mTOR signaling (DU145 cells). Prostate cancer growth and invasion are thus controlled by a fine-tuned network between IGF-1 driven integrin-FAK signaling and the Akt-mTOR pathway. Concerted targeting of integrin subtypes along with Akt-mTOR signaling could, therefore, open options to prevent progressive dissemination of prostate cancer.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 420
Author(s):  
Grażyna Kubiak-Tomaszewska ◽  
Piotr Roszkowski ◽  
Emilia Grosicka-Maciąg ◽  
Paulina Strzyga-Łach ◽  
Marta Struga

Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 12
Author(s):  
Ah Young Park ◽  
Imane Nafia ◽  
Damien N. Stringer ◽  
Samuel S. Karpiniec ◽  
J. Helen Fitton

Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNg) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.


2021 ◽  
Author(s):  
Alessandra Peres ◽  
Gilson Dorneles ◽  
Gisele Branchini ◽  
Fernanda Nunes ◽  
Pedro Romão ◽  
...  

Abstract This study aimed to evaluate the impact of exercise training plasma on in vitro prostate cancer cell viability and proliferation. PC3 prostate cancer cells were incubated with plasma obtained from young women with high and low physical fitness (PF) and with the plasma collected from institutionalized elderly before and after multimodal exercise training. Plasma from High PF women induced the lowest cell viability and proliferation after incubation time. PC3 cells presented lower cell viability and diminished rates of cell proliferation after the incubation with post-training plasma samples of elderly. The incubation of PC3 cells with post-training plasma of elderly decreased the mitochondrial membrane polarization and increased mitochondrial reactive oxygen species (ROS) production without changes in cytosolic ROS. Post-training plasma did not change apoptosis or necrosis rates in the PC-3 cell line. Multimodal exercise training increased the plasma levels of IL-2, IL-10, IFN-α, and FGF-1, and decreased TNF-α concentrations in institutionalized elderly. In conclusion, we showed that systemic adaptations in plasma mediators of institutionalized elderly may alter cell viability and proliferation by targeting mitochondrial ROS in a prostate cancer cell line.


Author(s):  
Rana A. Alghamdi ◽  
Marino Exposito-Rodriguez ◽  
Philip M. Mullineaux ◽  
Greg N. Brooke ◽  
Philippe P. Laissue

Phototoxicity is a significant constraint for live cell fluorescence microscopy. Excessive excitation light intensities change the homeostasis of the observed cells. Erroneous and misleading conclusions may be the problematic consequence of observing such light-induced pathophysiology. In this study, we assess the effect of blue light, as commonly used for GFP and YFP excitation, on a motile mammalian cell line. Tracking PC3 cells at different light doses and intensities, we show how motility can be used to reliably assess subtle positive and negative effects of illumination. We further show that the effects are a factor of intensity rather than light dose. Mitotic delay was not a sensitive indicator of phototoxicity. For early detection of the effect of blue light, we analysed the expression of genes involved in oxidative stress. This study addresses the need for relatively simple and sensitive methods to establish a dose-response curve for phototoxicity in mammalian cell line models. We conclude with a working model for phototoxicity and recommendations for its assessment.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6202
Author(s):  
Mireia Olivan ◽  
Marta Garcia ◽  
Leticia Suárez ◽  
Marc Guiu ◽  
Laura Gros ◽  
...  

About 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients’ quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors. Using genomic high-throughput analysis we identified a miRNA signature involved in bone metastasis that also presents potential as a biomarker of PCa progression in human samples. In particular, the downregulation of miR-135b favored the incidence of bone metastases by significantly increasing PCa cells’ migratory capacity. Moreover, the PLAG1, JAKMIP2, PDGFA, and VTI1b target genes were identified as potential mediators of miR-135b’s role in the dissemination to bone. In this study, we provide a genomic signature involved in PCa bone growth, contributing to a better understanding of the mechanisms responsible for this process. In the future, our results could ultimately translate into promising new therapeutic targets for the treatment of lethal PCa.


2021 ◽  
Vol 21 (04) ◽  
Author(s):  
Minghua Zhang

ABSTRACT This present study explored the functions of lncRNA DANCR on regulating sensitivity to 5-fluorouracil (5- FU) in prostate cancer in vitro. The RT-qPCR examined RNA expressions of LNCRNA DANCR in RWPE-1, VCaP, PC3 and LNCaP cells, which also measured RNA levels of miR-577 in PC3 cells. DANCR was highly expressed in prostate cancer cell lines. 5-FU (0, 1, 5 and 10¼M) treatment induced the decrease of PC3 cell viability and low RNA expressions of DANCR but increased miR-577 in PC3 cells. The luciferase reporter test detected the binding between DNACR and miR- 577 . Interactions between DANCR and miR-577 were examined. Knockdown of DANCR downregulated DANCR and Bcl- 2 RNA expressions but accelerated cell viability and upregulated Bax, which were enhanced by the overexpression of miR- 577. Hence, DANCR might restrain sensitivity of prostate cancer cells to 5-FU by downregulating miR-577


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7057
Author(s):  
Mostafa I. Abdelglil ◽  
Sanaa O. Abdallah ◽  
Mohamed A. El-Desouky ◽  
Mohammad Y. Alfaifi ◽  
Serag Eldin I. Elbehairi ◽  
...  

We aimed to evaluate the anticancer potential of crude venom (CV), γ irradiated Certastes cerastes venom (IRRV), and propolis ethanolic extract (PEE). IRRV showed a higher toxicity than CV, while CV-PEE showed higher toxicity than IRRV and CV against lung [A549] and prostate [PC3] cancer cells. Toxicity to [A549] and [PC3] cells was concentration and cell type dependent. In comparison to controls, apoptotic genes showed a significant upregulation of P53 and Casp-3 and a downregulation of Bcl-2. Also, induced elevated DNA accumulation in the [S] phase post PC3 cell treatment with IRRV and CV, as well as a significant DNA accumulation at G2/M phase after IRRV treatment of A549 cells. In contrast, PC3 cells showed a negligible cellular DNA accumulation after PEE treatment. Glutathione reductase [GR] was reduced in case of PC3 and A549 cell treated with IRRV, CV, and PEE compared with its values in untreated cell control. The Malondialdehyde [MDA] values in both cells recorded a significant elevation post IRRV treatment compared to the rest of the treatment regimen and untreated cell control. Similarly, IRRV and CV-PEE mix showed obviously higher reactive oxygen species [ROS] values than PC3 and A549 cell treatments with CV and PEE.


Sign in / Sign up

Export Citation Format

Share Document