Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

2011 ◽  
Vol 68 (7-8) ◽  
pp. 1260-1275 ◽  
Author(s):  
R. Bevilacqua ◽  
T. Lehmann ◽  
M. Romano
2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Riccardo Bevilacqua ◽  
Marcello Romano ◽  
Fabio Curti ◽  
Andrew P. Caprari ◽  
Veronica Pellegrini

This work introduces theoretical developments and experimental verification for Guidance, Navigation, and Control of autonomous multiple spacecraft assembly. We here address the in-plane orbital assembly case, where two translational and one rotational degrees of freedom are considered. Each spacecraft involved in the assembly is both chaser and target at the same time. The guidance and control strategies are LQR-based, designed to take into account the evolving shape and mass properties of the assembling spacecraft. Each spacecraft runs symmetric algorithms. The relative navigation is based on augmenting the target's state vector by introducing, as extra state components, the target's control inputs. By using the proposed navigation method, a chaser spacecraft can estimate the relative position, the attitude and the control inputs of a target spacecraft, flying in its proximity. The proposed approaches are successfully validated via hardware-in-the-loop experimentation, using four autonomous three-degree-of-freedom robotic spacecraft simulators, floating on a flat floor.


2005 ◽  
Vol 13 (4) ◽  
pp. 329-356 ◽  
Author(s):  
Christoph Meier ◽  
Jörn Jakobi ◽  
Paul Adamson ◽  
Sandra Lozito ◽  
Lynne Martin

Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


Sign in / Sign up

Export Citation Format

Share Document