Ferroelectric materials for piezoelectric actuators by optimal design

2011 ◽  
Vol 59 (10) ◽  
pp. 3770-3778 ◽  
Author(s):  
K.P. Jayachandran ◽  
J.M. Guedes ◽  
H.C. Rodrigues
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4215 ◽  
Author(s):  
Aleksander Muc ◽  
Justyna Flis ◽  
Marcin Augustyn

Aeroelastic optimization has become an indispensable component in the evaluation of divergence and flutter characteristics for plated/shell structures. The present paper intends to review the fundamental trends and dominant approaches in the optimal design of engineering constructions. A special attention is focused on the formulation of objective functions/functional and the definition of physical (material) variables, particularly in view of composite materials understood in the broader sense as not only multilayered laminates but also as sandwich structures, nanocomposites, functionally graded materials, and materials with piezoelectric actuators/sensors. Moreover, various original aspects of optimization problems of composite structures are demonstrated, discussed, and reviewed in depth.


2019 ◽  
Vol 9 (15) ◽  
pp. 3080
Author(s):  
Sunjin Yu ◽  
Sung Hun Jin ◽  
Kwangtaek Kim

Most users are not satisfied with the typing vibration feedback from linear motors of mobile phones since it feels like buzzing rather than physical key pressing feedback. For larger touchscreens, such as 10.1 inch tablets, there is no commercial tactile soft keyboard developed yet. Therefore, there is the need to develop a haptic soft keyboard technology imitating the physical keyboard for the tablet-sized touchscreen. In the present study, we present a new approach introducing an optimal design of a multilayered piezoelectric actuator that meets the need for a haptic soft keyboard for 10.1 inch tablets, implementing stronger tactile feedback that utilizes human sensitivity to time differences obtained by a psychophysical experiment and equalizes the force distribution of the touchscreen when using multiple piezoelectric actuators. The developed system was evaluated by a user study measuring typing performance.


2015 ◽  
Vol 39 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Marcus Neubauer

Abstract In vibration control with piezoceramics, a high coupling of the piezoelement with the structure is desired. A high coupling improves the damping performance of passive techniques like shunt damping. The coupling can be influenced by a the material properties of the piezoceramics, but also by the placement within the structure and the size of the transducer. Detailed knowlegde about the vibration behavior of the structure is required for this. This paper presents an in-depth analysis of the optimal shape of piezoelectric elements. General results for one-dimensional, but inhomogeneos strain distribution are provided. These results are applied to the case of a longitudinal transducer and a bending bimorph. It is obtained that for maximum coupling, only a certain fracture of the volume should be made of piezoelectric material&


Sign in / Sign up

Export Citation Format

Share Document