scholarly journals Spatial association between malaria vector species richness and malaria in Colombia

Acta Tropica ◽  
2016 ◽  
Vol 158 ◽  
pp. 197-200 ◽  
Author(s):  
Douglas O. Fuller ◽  
Temitope Alimi ◽  
Socrates Herrera ◽  
John C. Beier ◽  
Martha L. Quiñones
2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2004 ◽  
Vol 41 (4) ◽  
pp. 561-568 ◽  
Author(s):  
H. P. Awono-ambene ◽  
P. Kengne ◽  
F. Simard ◽  
C. Antonio-Nkondjio ◽  
D. Fontenille

2011 ◽  
Vol 106 (suppl 1) ◽  
pp. 223-238 ◽  
Author(s):  
James Montoya-Lerma ◽  
Yezid A Solarte ◽  
Gloria Isabel Giraldo-Calderón ◽  
Martha L Quiñones ◽  
Freddy Ruiz-López ◽  
...  

2019 ◽  
Vol 13 (5) ◽  
pp. e0007412 ◽  
Author(s):  
Catharine Prussing ◽  
Marlon P. Saavedra ◽  
Sara A. Bickersmith ◽  
Freddy Alava ◽  
Mitchel Guzmán ◽  
...  

2019 ◽  
Author(s):  
◽  
Chris S Clarkson ◽  
Alistair Miles ◽  
Nicholas J Harding ◽  
Eric R Lucas ◽  
...  

AbstractMosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analysed whole genomes of 1,142 individual mosquitoes sampled from the wild in 13 African countries, and a further 234 individuals comprising parents and progeny of 11 lab crosses. The data resource includes high confidence single nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We used these data to analyse genetic population structure, and characterise genetic diversity within and between populations. We also illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance, and for accelerating research and development of new vector control tools.


2011 ◽  
Vol 4 (1) ◽  
Author(s):  
Sinnathamby N Surendran ◽  
Kanapathy Gajapathy ◽  
Vaitheki Kumaran ◽  
Tharmasegaram Tharmatha ◽  
Pavilupillai J Jude ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Christine M. Jones ◽  
Ilinca I. Ciubotariu ◽  
Mbanga Muleba ◽  
James Lupiya ◽  
David Mbewe ◽  
...  

Residual vector populations that do not come in contact with the most frequently utilized indoor-directed interventions present major challenges to global malaria eradication. Many of these residual populations are mosquito species about which little is known. As part of a study to assess the threat of outdoor exposure to malaria mosquitoes within the Southern and Central Africa International Centers of Excellence for Malaria Research, foraging female anophelines were collected outside households in Nchelenge District, northern Zambia. These anophelines proved to be more diverse than had previously been reported in the area. In order to further characterize the anopheline species, sequencing and phylogenetic approaches were utilized. Anopheline mosquitoes were collected from outdoor light traps, morphologically identified, and sent to Johns Hopkins Bloomberg School of Public Health for sequencing. Sanger sequencing from 115 field-derived samples yielded mitochondrial COI sequences, which were aligned with a homologous 488 bp gene segment from known anophelines (n = 140) retrieved from NCBI. Nuclear ITS2 sequences (n = 57) for at least one individual from each unique COI clade were generated and compared against NCBI’s nucleotide BLAST database to provide additional evidence for taxonomical identity and structure. Molecular and morphological data were combined for assignment of species or higher taxonomy. Twelve phylogenetic groups were characterized from the COI and ITS2 sequence data, including the primary vector species Anopheles funestus s.s. and An. gambiae s.s. An unexpectedly large proportion of the field collections were identified as An. coustani and An. sp. 6. Six phylogenetic groups remain unidentified to species-level. Outdoor collections of anopheline mosquitoes in areas frequented by people in Nchelenge, northern Zambia, proved to be extremely diverse. Morphological misidentification and underrepresentation of some anopheline species in sequence databases confound efforts to confirm identity of potential malaria vector species. The large number of unidentified anophelines could compromise the malaria vector surveillance and malaria control efforts not only in northern Zambia but other places where surveillance and control are focused on indoor-foraging and resting anophelines. Therefore, it is critical to continue development of methodologies that allow better identification of these populations and revisiting and cleaning current genomic databases.


Sign in / Sign up

Export Citation Format

Share Document