Field evaluation of four commercial light traps, trap placement, and effect of carbon dioxide on phlebotomine sand fly collection in northern Thailand

Acta Tropica ◽  
2021 ◽  
pp. 105953
Author(s):  
Puckavadee Somwang ◽  
Pathamet Khositharattanakool ◽  
Nattaphol Pathawong ◽  
Arissara Pongsiri ◽  
Silas A. Davidson ◽  
...  
2020 ◽  
Author(s):  
Puckavadee Somwang ◽  
Pathamet Khositharattanakool ◽  
Nattaphol Pathawong ◽  
Arissara Pongsiri ◽  
Silas A. Davidson ◽  
...  

Abstract Background Several light trap devices have been invented and developed to assess the abundance of sand flies. Traps available in the market have different designs and attractant combinations to catch sand fly vectors. We evaluated the efficacy of four commercial light traps and determined the effect of trap placement and carbon dioxide (CO2) on sand fly collection in northern Thailand. Methods Trap evaluations were conducted at two natural caves located in Chiang Rai province, Thailand. In the first part of the study, the efficacies of four trap types including the Centers for Disease Control miniature light trap (CDC LT), Encephalitis Vector Survey trap (EVS), CDC Updraft Blacklight trap (CDC UB), and Laika trap (LK) were evaluated and compared using a Latin square experimental design. The second half of the study evaluated the influence of trap placement and CO2 on sand fly collection. Additionally, CDC LT were placed inside, outside, and at the entrance of caves to compare the number of sand flies collected. Results For the trap efficacy experiment, a total of 11,876 phlebotomine sand flies were collected over 32 trap-nights. Results demonstrated that CDC LT, CDC UB, and LK collected significantly more sand flies than EVS (P > 0.05). However, there were no significant differences between the numbers of sand flies collected by CDC LT, CDC UB, and LK. A total of 6,698 sand flies were collected from the trap placement and CO2 experiment over 72 trap-nights. Results showed that CO2 did not influence the numbers of sand flies captured (P < 0.05), whereas trap placement at the entrance of the caves resulted in collection of significantly more sand flies than traps placed inside and outside of the caves. Conclusion We found the CDC LT, CDC UB, and LK without CO2 captured the greatest amount of sand flies. This was particularly observed when traps were placed at the entrance of a cave, perhaps because of the greater passage of stimuli caused by wind flow at the entrance of the cave. The light traps in this study can be used effectively to collect sand fly vectors in northern Thailand.


2009 ◽  
Vol 66 (4) ◽  
pp. 417-424 ◽  
Author(s):  
Greg Dojchinov ◽  
Katherine A Damcevski ◽  
James D Woodman ◽  
Victoria S Haritos

2018 ◽  
Vol 112 (1) ◽  
pp. 494-498 ◽  
Author(s):  
John Paul Benante ◽  
James Fox ◽  
Kendra Lawrence ◽  
Thanyalak Fansiri ◽  
Arissara Pongsiri ◽  
...  

Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


Ecohydrology ◽  
2012 ◽  
Vol 6 (1) ◽  
pp. 125-133
Author(s):  
Yasunori Igarashi ◽  
Nobuaki Tanaka ◽  
Katsunori Tanaka ◽  
Natsuko Yoshifuji ◽  
Takanori Sato ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gabriella Gaglio ◽  
Ettore Napoli ◽  
Francesca Arfuso ◽  
Jessica Maria Abbate ◽  
Salvatore Giannetto ◽  
...  

Light traps represent the most used attractive system to collect and monitor phlebotomine sand flies. Recent studies have suggested that light traps can be easily upgraded by the use of light-emitting diode (LED) with positive effects on trap design, weight, and battery life. However, scant data on the effect of different LED colours on the attractiveness to phlebotomine sand fly species are available in literature. In this study, the capture performances of light traps equipped with different LED colours on phlebotomine sand fly species indigenous in the Mediterranean area were evaluated. Phlebotomine sand fly collections were performed using a classical light trap (CLT), equipped with a traditional incandescent lamp, and five Laika 4.0 light traps supplied, each with LED of different colours and wavelengths: (i) white; (ii) red; (iii) green; (iv) blue; (v) UV. Light traps were set for three consecutive nights fortnightly from May to October 2017 and climate data recorded using a meteorological station. A total of 411 phlebotomine sand flies (191 males and 220 females), belonging to three different species, namely, Phlebotomus perniciosus (n= 298, 141 males and 157 females), Sergentomyia minuta (n=110, 48 males and 62 females), and Phlebotomus neglectus (n=3, 2 males and 1 females) were collected. Abundance of capture was influenced by colours of LED and time. The highest number of phlebotomine sand flies was captured on June (P<0.01) and by UV LED (P<0.01). As regard to species, P. perniciosus was mainly captured by UV LED on June (P<0.01). No effect of time (P>0.05) or LED colour (P>0.05) was recorded for S. minuta and P. neglectus. According to the results of the present study light trap equipped with UV LED can represent an effective tool for the capture of sand fly species in the Mediterranean area.


2018 ◽  
Vol 9 (3) ◽  
pp. 299-308 ◽  
Author(s):  
Aaron Cupp ◽  
Justin Smerud ◽  
John Tix ◽  
Susan Schleis ◽  
Kim Fredricks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document