scholarly journals Geochemical Modeling of Scale Formation due to Cooling and CO2-degassing in San Kamphaeng Geothermal Field, Northern Thailand

Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling

Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2014 ◽  
Vol 2 (12) ◽  
pp. 7293-7308
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4023
Author(s):  
Roberta Iacono ◽  
Beatrice Cobucci-Ponzano ◽  
Federica De Lise ◽  
Nicola Curci ◽  
Luisa Maurelli ◽  
...  

Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.


Author(s):  
Sirjana Tiwari

Background: Natural hot spring bath has enormous health benefits. The water found in natural hot springs contains a variety of different minerals which shows positive benefits on rheumatism, skin diseases, gastritis, sinusitis, cardiac diseases, joint pain and many more. The healing effect is mostly from mineral composition.Methods: Phenomenological study was conducted on twenty-one participants who were taking natural hot spring water bath in Singha tatopani, Myagdi. Each participant was randomly selected. Eight In-depth interview and two focus group discussion were used for collecting information. People who have immediate bath experience were included in the study and those who were ill and not able to response the question due to illness were excluded from the study. Informed consent was taken from each participant before participation. Afterwards transcripts were transcribe and translated in English and analyzed using thematic analysis was done with the means of Ms. Excel.Results: Participants perceived natural hot spring water bath has positive effects on health and experience large sweating and excretion of urine while bathing. It helps to run their digestive system smoothly, improve blood circulation, and prevent skin problem, relief uric acid, sinusitis, pneumonia, tonsillitis, nose allergy, chest allergy, bronchitis and insomnia. Hot spring foment their pain organ and promote health of accidental victims, physically handicapped people, minimized uterine problem of women, eye itching and epiphora (watery eye).Conclusions: Common diseases Gastritis, rheumatism, skin disease, uric acid can be relieved by taking natural hot spring water bath as well as it help to promote and improve their health status. That’s why natural hot spring water bath can be a beneficial for improvement of public health.


Botanica ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Chayakorn Pumas ◽  
Supattira Pruetiworanan ◽  
Yuwadee Peerapornpisal

AbstractDiversity of hot spring diatoms in northern Thailand was studied. Forty-six diatom species were identified in eight localities. The dominant species according to high relative abundance were Diatomella balfouriana (41.7%), Achnanthidium exiguum (20.9%) and Anomoeoneis sphaerophora (11.2%). Moreover, Caloneis molaris, Craticula acidoclinata, Navicula subrhynchocephala and Pinnularia saprophila were recorded as species new to Thailand. The NMDS ordination revealed variation in species composition of eight different hot springs and correlation with the existing environmental variables. Silicon dioxide (SiO2), pH, conductivity, water temperature and total hardness were statistically significant factors affecting relative abundance of Achnanthidium exiguum, Amphora montana, Caloneis aequatorialis, Cocconeis placentula, Craticula cuspidata, Diploneis elliptica, Gomphonema affine, Gomphonema augur, Halamphora fontinalis, Planothidium lanceolatum, Pinnularia abaujensis, Sellaphora lanceolata and Stauroneis anceps.


Author(s):  
Bolormaa Ch ◽  
Oyuntsetseg D ◽  
Bolormaa O

In this study, we collected hot spring water sample from Otgontenger, Tsetsuukh, Zart, Ulaan Khaalga and Khojuul in Zavkhan province. The purpose of this study is to determine the temperature of geothermal water and its depth which based on the hydrochemical component. Hot spring water analyses showed that temperature ranges between 33.4 to 45.5°C, pH ranges 8.40 to 9.56, and the total dissolved solid amount was 170 to 473 mg/L. From the result of hydrochemical analyses, hot spring samples were included in SO4-Na and HCO3-Na type. In comparison to other hot spring samples, Tsetsuukh hot spring has shown negative oxidation reduction potential, -0.8 mV and dissolved hydrogen, 0.22 mg/L. Therefore, it has a higher ability for medical treatment than other hot spring water due to its reduction state. The reservoir temperature of these hot springs is calculated by several geothermometer methods, and temperatures ranged between 102оC to 149оC. According to this result, it assumed that geothermal water with low temperature which has the ability to use for room heating and producing energy by the binary system. Thus, we determined that reservoir depth is 1.3 to 3.7 km using annual average surface and reservoir temperature, and regional geothermal gradient. Завхан аймгийн халуун рашаануудын химийн найрлага, геотермометрийн судалгаа Хураангуй: Бид энэхүү судалгааны ажлаар Завхан аймгийн нутагт орших Отгонтэнгэр, Зарт, Цэцүүх, Улаан хаалга, Хожуулын халуун рашаануудын гидрохимийн найрлагыг нарийвчлан тогтоосоны үндсэн дээр тухайн рашаануудын газрын гүний халуун усны температур болон гүнийг тогтоох зорилго тавин ажиллаа. Завхан аймгийн рашаанууд нь халуун 33.4-45.5°C температуртай, шүлтлэг орчинтой (pH 8.4-9.56), 170-473 мг/л хүртэл эрдэсжилттэй, HCO3-Na болон SO4-Na-ийн төрлийн халуун рашааны ангилалд хамаарагдаж байна. Эдгээр рашаануудаас Цэцүүхийн халуун рашааны исэлдэн ангижрах потенциал нь -0.8 мВ, ууссан устөрөгчийн агуулга 0.22 мг/л илэрсэн нь судалгаанд хамрагдсан бусад рашаануудтай харьцуулахад ангижрах төлөвт оршиж байгаа бөгөөд илүү эмчилгээний идэвхтэй болохыг харуулж байна. Судалгаанд хамрагдсан халуун рашаануудын гүний температурыг химийн найрлагаас нь хамааруулан хэд хэдэн геотермометрийг ашиглан тооцоход дунджаар 102-149oС байсан ба энэ нь бага температуртай усны ангилалд хамаарагдаж байгаа учир тухайн халуун усны нөөцийг өрөө тасалгаа халаах болон бинари системийг ашиглан цахилгаан гаргаж авах боломжтой байна. Мөн Завхан аймгийн халуун рашаануудын газрын гүний халуун усны нөөц нь газрын гадаргаас доош 1.3-3.7 км-ийн гүнд байрладаг болохыг орд дээрх температур, газрын гүний халуун усны температур болон бүс нутгийн геотермал градиентад үндэслэн тооцоолон тодорхойллоо. Түлхүүр үг: Гидрохими, халуун рашаан, геотермометр, гүний температур.


2019 ◽  
Vol 2 (2) ◽  
pp. 090-096
Author(s):  
Helda Andayany ◽  
Josephus Ronny Kelibulin

Petrographic analysis to rock samples located at Oma-Haruku hot springs was dominated by mudstone. Another alteration mineral types of the rocks in this area are quartz, aragonite/calcite and feldspar minerals. Petrographic analysis was supported by the XRD method. The method indicated that the alteration minerals content was generally dominated by the presence of aragonite/calcite with particle size of 0.05 - 2 mm, the abundance of 55% and the spread evenly. Based on such presence of aragonite/calcite, one can interpret that the origin rock was carbonate. Alteration minerals which were generally dominated by mudstone indicate that the type of hot spring area in Oma-Haruku is a type of high-temperature reservoir, namely > 175 oC. Therefore, the area is  potentially as geothermal field in Central of Moluccas.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2613-2622
Author(s):  
Bi Li ◽  
Shi Zheng

Guangxi Guilin area, China, is rich in hot spring resources. In this paper, a hot spring water temperature monitoring system is developed for longsheng hot springs. Mainly using the hot water of eye of hot springs as the heat source, designing a set of multi-point temperature monitoring system with single-chip and multi-slave as the core of the single-chip microcomputer and wireless and bi-directional transmission for the main station and multiple slave stations to realize automatic temperature monitoring. The system slave station can exchange geothermal water with high temperature extracted from the eye of hot springs and cold water, and automatically control the temperature of the hot spring pool to reach a set value range by controlling the flow rate of the cold water. At the same time, the main station can complete the tasks of monitoring system by setting control commands such as temperature.


2021 ◽  
Vol 9 (7) ◽  
pp. 1402
Author(s):  
Sania Arif ◽  
Corinna Willenberg ◽  
Annika Dreyer ◽  
Heiko Nacke ◽  
Michael Hoppert

The hydrothermal steam environment of Sasso Pisano (Italy) was selected to investigate the associated microbial community and its metabolic potential. In this context, 16S and 18S rRNA gene partial sequences of thermophilic prokaryotes and eukaryotes inhabiting hot springs and fumaroles as well as mesophilic microbes colonising soil and water were analysed by high-throughput amplicon sequencing. The eukaryotic and prokaryotic communities from hot environments clearly differ from reference microbial communities of colder soil sites, though Ktedonobacteria showed high abundances in various hot spring samples and a few soil samples. This indicates that the hydrothermal steam environments of Sasso Pisano represent not only a vast reservoir of thermophilic but also mesophilic members of this Chloroflexi class. Metabolic functional profiling revealed that the hot spring microbiome exhibits a higher capability to utilise methane and aromatic compounds and is more diverse in its sulphur and nitrogen metabolism than the mesophilic soil microbial consortium. In addition, heavy metal resistance-conferring genes were significantly more abundant in the hot spring microbiome. The eukaryotic diversity at a fumarole indicated high abundances of primary producers (unicellular red algae: Cyanidiales), consumers (Arthropoda: Collembola sp.), and endoparasite Apicomplexa (Gregarina sp.), which helps to hypothesise a simplified food web at this hot and extremely nutrient-deprived acidic environment.


2020 ◽  
Vol 1 (1) ◽  
pp. 56-63
Author(s):  
Fajar Rizki Widiatmoko ◽  
Mochammad Nur Hadi ◽  
Dedi Kusnadi ◽  
Sachrul Iswahyudi ◽  
Fadlin Fadlin

Wae Sano volcano is included in the inner Banda arc, Mount Wae Sano is a type C volcano and formed the Sano Nggoang crater lake. The magmatism activity produces geothermal manifestations such as; hot spring, rock alteration, and sulfur deposits, the hottest water temperature is 81 0C, with neutral pH, but the Sano Nggoang Lake water has acid pH. It becomes interesting to examine the characteristics of the geothermal system in that area. The research was conducted by Volcanostratigraphic studies to reconstruct the geological process and Geochemical sampling of hot springs, lake water, ground air, and the soil side to understand the subsurface characterization. The result showing some period of volcano products, with the youngest come from the product of Sano Nggoang 2 that spills its product to on the north-east side of Poco Dedeng volcano. The geochemical analysis shows all manifestations originate from one reservoir, chloride water type, NaCl type of the lake water with a few SO4 influence, presumably, the hot springs supply is influenced by seawater, the estimation of the reservoir has a temperature about ± 230 0C, with dacite and the rich organic sedimentary rock, and located at ± 1456 m from the manifestation, the isothermal section shows the rate of temperature increase at 97.07 m / 10 0C. The hypothetical resource is counted about 1,488.6 kWe.


Sign in / Sign up

Export Citation Format

Share Document