scholarly journals Influence of powder characteristics on densification via crystallographic texture formation: Pure tungsten prepared by laser powder bed fusion

2021 ◽  
pp. 100016
Author(s):  
Ozkan Gokcekaya ◽  
Takuya Ishimoto ◽  
Tsubasa Todo ◽  
Pan Wang ◽  
Takayoshi Nakano
2022 ◽  
Vol 206 ◽  
pp. 114252
Author(s):  
Tsubasa Todo ◽  
Takuya Ishimoto ◽  
Ozkan Gokcekaya ◽  
Jongyeong Oh ◽  
Takayoshi Nakano

2021 ◽  
pp. 116876
Author(s):  
Ozkan Gokcekaya ◽  
Takuya Ishimoto ◽  
Shinya Hibino ◽  
Jumpei Yasutomi ◽  
Takayuki Narushima ◽  
...  

Author(s):  
Rafael de Moura Nobre ◽  
Willy Ank de Morais ◽  
Matheus Tavares Vasques ◽  
Jhoan Guzmán ◽  
Daniel Luiz Rodrigues Junior ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1064
Author(s):  
Shinya Hibino ◽  
Tsubasa Todo ◽  
Takuya Ishimoto ◽  
Ozkan Gokcekaya ◽  
Yuichiro Koizumi ◽  
...  

The influence of various laser powder bed fusion (LPBF) process parameters on the crystallographic textures and mechanical properties of a typical Ni-based solid-solution strengthened alloy, Hastelloy-X, was examined. Samples were classified into four groups based on the type of crystallographic texture: single crystalline-like microstructure with <100>//build direction (BD) (<100>-SCM), single crystalline-like microstructure with <110>//BD (<110>-SCM), crystallographic lamellar microstructure (CLM), or polycrystalline microstructure (PCM). These four crystallographic textures were realized in Hastelloy-X for the first time here to the best of our knowledge. The mechanical properties of the samples varied depending on their texture. The tensile properties were affected not only by the Schmid factor but also by the grain size and the presence of lamellar boundaries (grain boundaries). The lamellar boundaries at the interface between the <110>//BD oriented main layers and the <100>//BD-oriented sub-layers of CLM contributed to the resistance to slip transmission and the increased proof stress. It was possible to control a wide range of crystallographic microstructures via the LPBF process parameters, which determines the melt pool morphology and solidification behavior.


2020 ◽  
Vol 360 ◽  
pp. 998-1005 ◽  
Author(s):  
Elodie Vasquez ◽  
Pierre-François Giroux ◽  
Fernando Lomello ◽  
Matthieu Nussbaum ◽  
Hicham Maskrot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document