scholarly journals Integration of parametric modelling in web-based knowledge-based engineering applications

2022 ◽  
Vol 51 ◽  
pp. 101492
Author(s):  
Alexander Ortner-Pichler ◽  
Christian Landschützer
2021 ◽  
Vol 26 ◽  
pp. 193-226
Author(s):  
Marco Häußler ◽  
André Borrmann

Designing railway infrastructure is a knowledge-intensive task. Although there are a number of mature design authoring systems available, their support for dynamically incorporating domain-specific engineering knowledge is very limited. At the same time, a standardized digital representation of railway engineering knowledge (such as building codes and best practice) does not exists. To overcome this deficiency, this paper proposes the use of Knowledge Based Engineering (KBE) to automate routine design tasks by considering multiple knowledge sources. In this scenario, KBE is used to support a Railway design authoring system. To ensure maximum transparency in the design of the developed KBE application, graphical ‘Business Process Model and Notation’ (BPMN) has been used in combination with ‘Decision Model and Notation’ (DMN) to formalize the underlying engineering knowledge. The KBE application has been developed according to the Methodology for Knowledge-Based Engineering Applications (MOKA). An evaluation of the BPMN/DMN approach shows that it meets up to 58% of the acceptance criteria found in the literature. In addition, BPMN and DMN can already be used in the early capture phase of MOKA and its workflows can be developed into an executable KBE application in the subsequent phases. The results of the test example discussed here show that time savings of up to 97.5% can be achieved in the execution of the KBE application.


2012 ◽  
Vol 26 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Pablo Bermell-Garcia ◽  
Wim J.C. Verhagen ◽  
Simon Astwood ◽  
Kiran Krishnamurthy ◽  
Jean Luc Johnson ◽  
...  

2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


Author(s):  
Jerzy Pokojski ◽  
Karol Szustakiewicz ◽  
Łukasz Woźnicki ◽  
Konrad Oleksiński ◽  
Jarosław Pruszyński

2009 ◽  
Author(s):  
Jinfeng Chen ◽  
◽  
Hezhen Yang ◽  
Ruhong Jiang ◽  
Deyu Wang ◽  
...  

Author(s):  
Naoufel Khayati ◽  
Wided Lejouad-Chaari

In this paper, we present a distributed collaborative system assisting physicians in diagnosis when processing medical images. This is a Web-based solution since the different participants and resources are on various sites. It is collaborative because these participants (physicians, radiologists, knowledgebasesdesigners, program developers for medical image processing, etc.) can work collaboratively to enhance the quality of programs and then the quality of the diagnosis results. It is intelligent since it is a knowledge-based system including, but not only, a knowledge base, an inference engine said supervision engine and ontologies. The current work deals with the osteoporosis detection in bone radiographies. We rely on program supervision techniques that aim to automatically plan and control complex software usage. Our main contribution is to allow physicians, who are not experts in computing, to benefit from technological advances made by experts in image processing, and then to efficiently use various osteoporosis detection programs in a distributed environment.


Sign in / Sign up

Export Citation Format

Share Document