scholarly journals Numerical study of melting-process of a non-Newtonian fluid inside a metal foam

2020 ◽  
Vol 59 (1) ◽  
pp. 191-207 ◽  
Author(s):  
S.A.M. Mehryan ◽  
Mohammad H. Heidarshenas ◽  
Ahmad Hajjar ◽  
Mohammad Ghalambaz
Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Francesco Moriello ◽  
Simone Mancin

Abstract This study attempts to control the temperature peaks due to the operation of the battery itself by examining a two-dimensional model to numerically investigate the thermal control of a lithium battery of a commercial electric car. The battery has the dimensions of 8 cm × 31 cm × 67 cm and its capacity is equal to 232 Ah with 5.3 kWh. Thermal control is achieved by means of an internal layer of copper or aluminum foam and phase change material (paraffin), placed on the top of the battery and the external surfaces are cooled by a convective flow. The governing equations, written assuming the local thermal equilibrium for the metal foam, are solved with the finite volume method using the commercial code Ansys-Fluent. Different cases are simulated for different thicknesses of the thermal control system and external convective heat transfer coefficient. The results are given in terms of temperature fields, liquid fraction, surface temperature profiles as a function of time and temperature distributions along the outer surface of the battery for the different cases. In addition, some comparisons with pure PCM are provided to show the advantages of the composite thermal control system with PCM inside the metal foam.


2021 ◽  
Author(s):  
Bernardo Buonomo ◽  
Furio Cascetta ◽  
Anna Di Pasqua ◽  
Oronzio Manca ◽  
Sergio Nappo

2019 ◽  
Vol 18 (1) ◽  
pp. 78
Author(s):  
F. C. Spengler ◽  
B. Oliveira ◽  
R. C. Oliveski ◽  
L. A. O. Rocha

The thermal heat storage it’s an effective way to suit the energy availability with the demand schedule. It can be stored in the means of sensible or latent heat, the latter applying a material denominated Phase Change Material (PCM), which is provided as organic compounds, hydrated salts, paraffins, among others. The latent heat storage systems offer several advantages, like the practically isothermal process of loading and unloading and the high energy density. However, the low thermal conductivity makes the cycle prolonged on these systems, restricting its applicability. Applying computational fluid dynamics, the behavior of the PCM melting process was studied in cylindrical cavities with horizontal and vertical fins, aiming the optimization of the fin geometry. In this way the fin area was kept constant, varying its aspect ratio. The numerical model was validated with results from the literature and it’s composed of the continuity, momentum and energy equations increased by the phase change model. Qualitative and quantitative results are presented, referring to mesh independence, contours of velocity, net fraction and temperature at different moments of the process. The results of the study indicate that the position of the fin in the heat exchanger influences the melting process, although the vertical fins have a faster total melting process, horizontal fins can reach larger partial liquid fractions in less time in the heat exchanger. Such as the position of the fin, the increase of its length propitiates the reduction of the melting time, evidencing the optimal aspect ratio.


2015 ◽  
Vol 75 ◽  
pp. 3091-3097 ◽  
Author(s):  
Peng Zhang ◽  
Zhaonan Meng ◽  
Hua Zhu ◽  
Yanling Wang ◽  
Shiping Peng

Sign in / Sign up

Export Citation Format

Share Document