scholarly journals A new operational matrix of fractional derivative based on the generalized Gegenbauer–Humbert polynomials to solve fractional differential equations

2021 ◽  
Vol 60 (4) ◽  
pp. 3509-3519
Author(s):  
Jumana H.S. Alkhalissi ◽  
Ibrahim Emiroglu ◽  
Mustafa Bayram ◽  
Aydin Secer ◽  
Fatih Tasci
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu

We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein polynomials (BPs). In the first method, we use the operational matrix of Caputo fractional derivative (OMCFD), and in the second one, we apply the operational matrix of Riemann-Liouville fractional integral (OMRLFI). The obtained results are in good agreement with each other as well as with the analytical solutions. We show that the solutions approach to classical solutions as the order of the fractional derivatives approaches 1.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


Author(s):  
A. M. Nagy ◽  
N. H. Sweilam ◽  
Adel A. El-Sayed

The multiterm fractional variable-order differential equation has a massive application in physics and engineering problems. Therefore, a numerical method is presented to solve a class of variable order fractional differential equations (FDEs) based on an operational matrix of shifted Chebyshev polynomials of the fourth kind. Utilizing the constructed operational matrix, the fundamental problem is reduced to an algebraic system of equations which can be solved numerically. The error estimate of the proposed method is studied. Finally, the accuracy, applicability, and validity of the suggested method are illustrated through several examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Sign in / Sign up

Export Citation Format

Share Document