scholarly journals A two-layer control strategy of the wind farm participating in grid frequency regulation

Author(s):  
Hui Fan ◽  
Ming Tang
2019 ◽  
Vol 11 (16) ◽  
pp. 4317 ◽  
Author(s):  
Fazel Mohammadi ◽  
Gholam-Abbas Nazri ◽  
Mehrdad Saif

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential of providing frequency regulation due to the adjustment of power charging. Based on the stochastic nature of the daily mileage and the arrival and departure time of Electric Vehicles (EVs), a precise bidirectional charging control strategy of plug-in hybrid electric vehicles by considering the State of Charge (SoC) of the batteries and simultaneous voltage and frequency regulation is presented in this paper. The proposed strategy can control the batteries charge which are connected to the grid, and simultaneously regulate the voltage and frequency of the power grid during the charging time based on the available power when different events occur over a 24-h period. The simulation results prove the validity of the proposed control strategy in coordinating plug-in hybrid electric vehicles aggregations and its significant contribution to the peak reduction, as well as power quality improvement. The case study in this paper consists of detailed models of Distributed Energy Resources (DERs), diesel generator and wind farm, a generic aggregation of EVs with various charging profiles, and different loads. The test system is simulated and analyzed in MATLAB/SIMULINK software.


2014 ◽  
Vol 1070-1072 ◽  
pp. 319-326
Author(s):  
Zhi Xu ◽  
Hong Tao Wang ◽  
Cheng Ming He

For the rotor speed of variable speed wind turbine (VSWT) is decoupled from system frequency, the system equivalent rotary inertia and primary frequency control ability are decreased with wind power penetration growing continuously. To solve the problems, VSWT with additional frequency control was studied. The dynamic characteristics of input and output power of VSWT during participating in system frequency regulation are analyzed. The relationships between the active power increments and the duration of VSWT participating frequency control are quantified. A coordination frequency control strategy base on time sequence control is proposed. According to the control strategy, the VSWTs can participate in frequency regulation depending on the coordination of wind speed, power increments and duration. The simulation results demonstrate the effectiveness of the proposed control strategy, which can make full use of the frequency regulation ability of VSWTs as well as minimize the negative effects on system frequency.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6095
Author(s):  
Yuhong Wang ◽  
Jie Zhu ◽  
Qi Zeng ◽  
Zongsheng Zheng ◽  
Guangyuan Yu ◽  
...  

Under the background of high wind power permeability, the frequency regulation capability of high voltage direct current (HVDC) sending-end system tends to deteriorate. For this reason, this paper regards the wind farm (WF) and HVDC as a combined frequency regulation system, and a fuzzy-based coordinated control strategy is proposed for the cooperation of HVDC and WF to participate in frequency regulation. First of all, at a system level, in order to realize the dynamic cooperation of the WF and the HVDC to participate in frequency regulation, two fuzzy logic controllers (FLCs) are designed to determine the total power support of the combined system and the participation coefficient of the WF in the frequency regulation according to the frequency characteristics of the sending-end system and the operation state of the WF, respectively. Secondly, at the WF level, considering the rotating kinetic energy and capacity of the wind turbines (WTs), a power allocation strategy is proposed to maximize the utilization of the frequency regulation capacity of the grid-connected WTs in WF. Finally, based on the fast power regulation of HVDC, an active secondary frequency drop (SFD) suppression strategy is proposed to avoid the possible SFD caused by the rotor speed recovery of WTs. The simulation results show that the proposed strategy can make full use of the frequency regulation ability of the WF and HVDC, and can effectively improve the frequency characteristics of the HVDC sending-end system.


Sign in / Sign up

Export Citation Format

Share Document