scholarly journals Thermo-physiological properties of polyester chenille single Jersey knitted fabrics

Author(s):  
Abdelmonem Fouda ◽  
Pavla Těšinová ◽  
Amany Khalil ◽  
Moaaz Eldeeb
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rajesh Mishra ◽  
Hafsa Jamshaid ◽  
Sheraz Hussain Siddique Yosfani ◽  
Uzair Hussain ◽  
Muhammad Nadeem ◽  
...  

AbstractThe main aim of this study is to determine the thermo-physiological comfort properties of single knit fabrics and their derivatives. As the Single Jersey knitted fabrics are the most widely used fabrics in the apparel sector, they have been selected for the analysis purpose. Derivatives of single jersey are developed and compared in order to understand the influence of structural variations. Physical properties e.g. thickness and areal density were evaluated for all knitted fabrics with 100% cotton yarn having three different yarn linear densities and after different stages of relaxation. Various thermo-physiological properties have been studied by changing the combed cotton yarn linear density as well as the structure of single knit fabric. Air permeability, thermal insulation and relative water vapor permeability of the fabrics were observed and investigated under wet relaxed states. It is determined that fabric physical properties are affected by changing yarn linear density and by the dry or wet relaxation stages. The percentage/number of tuck stitches (NTS), location of tuck stitches (LTS) and ratio of tuck to knit stitches (RTKS) have strong influence on physical and thermo-physiological properties of single knit fabrics, even though other knitting parameters remained the same.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mitra Karimian ◽  
Hossein Hasani ◽  
Saeed Ajeli

This research investigates the effect of fiber, yarn and fabric variables on the bagging behavior of single jersey weft knitted fabrics interpreted in terms of bagging fatigue percentage. In order to estimate the optimum process conditions and to examine the individual effects of each controllable factor on a particular response, Taguchi's experimental design was used. The controllable factors considered in this research are blending ratio, yarn twist and count, fabric structure and fabric density. The findings show that fabric structure has the largest effect on the fabric bagging. Factor yarn twist is second and is followed by fabric density, blend ratio and yarn count. The optimum conditions to achieve the least bagging fatigue ratio were determined.


2019 ◽  
Vol 27 (1(133)) ◽  
pp. 59-66 ◽  
Author(s):  
Mihriban Kalkanci

The present study aimed to comparatively determine fabric spirality in single jersey knitted fabrics manufactured from different fibers and fiber blends under the same conditions as well as its effect on the efficiency of apparel manufacturing. To that end, the fabric spirality was studied for 18 different fabrics manufactured from nine different fiber blends (100% Organic Cotton, 100% Cotton, 100% Viscose, 100% Modal, 95% Viscose-5% PES, 50% Cotton-50% Viscose, 50% Modal-50% Organic Cotton, 70% Viscose-30% PES, 80% Viscose-20% PES) at 2 different knitting densities. In order to determine the effect of fabric spirality on the marker plan, a t-shirt model was selected and a total of 8 different fabric marker plans were prepared in 2 different assortments and at 3 different spirality rates. Finally fabric efficiency and the effect of spirality on unit fabric consumption were investigated for all fabric marker plans. In the end, the greatest spirality was observed for 100% viscose fabrics. It was also determined that as the fabric spirality increases (5%, 7% and 10%), CAD efficiency decreases by rates of 2.4%, 3.68% and 5.25%, respectively, in comparison with the marker plan for the fabric not exhibiting spirality.


2017 ◽  
Vol 12 (1) ◽  
pp. 155892501701200
Author(s):  
Züleyha Değirmenci ◽  
Ebru Çoruh

This paper reports the effect of loop length and raw material on the air permeability and the bursting strength of plain knitted fabrics. In this study, a series of plain knitted fabrics were produced on a circular knitting machine with cotton, polyester, acrylic and viscose by Ne 30/1 yarns. Each fabric type was produced with four different stitch lengths. All the fabrics were knitted at the same machine setting in order to determine the effect of their structure on the fabric properties. Their geometrical and physical properties were experimentally investigated. The influences of the loop length and the raw material on the number of the courses per cm, number of the wales per cm, loop shape factor, thickness, fabric unit weight, tightness factor, air permeability and bursting strength are analyzed. Statistical analysis indicates that raw material and loop length significantly parameters affect the air permeability and the bursting strength properties of the fabrics.


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900
Author(s):  
Ivana Salopek Cubric ◽  
Vesna Marija Potocic Matkovic ◽  
Zenun Skenderi

In order to investigate the changes of knitted fabric properties due to exposure to outdoor natural weathering, a series of single jersey fabrics made from different raw materials was produced. The fabrics were exposed to summer weather conditions in duration of three months. The exposure of knitted fabrics to outdoor natural weathering in the summer period affected all investigated properties, namely, structural properties, tensile properties and heat resistance. The most significant changes were: the vertical density increased up to 31%, the mass per unit area increased up to 26%, the breaking force decreased in both directions for up to 54% and the heat resistance decreased up to 18%.


2016 ◽  
Vol 88 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Jefferson M Souza ◽  
Sandra Sampaio ◽  
Welter C Silva ◽  
Sidney G de Lima ◽  
Andrea Zille ◽  
...  

Eight functional single jersey plain knitted fabrics have been developed in order to assess a quantitative analysis of various comfort-related properties in terms of thermal control, air and water vapor permeability, wickability, coefficient of kinetic friction and antimicrobial efficiency, using eight different commercially available functional yarns: Polyester Craque® and viscose Craque® conventional yarns as controls; Finecool® and Coolmax® polyester yarns for moisture management and quick drying; Holofiber® polyester yarns containing an optical responsive material that the producer claims to improve body oxygenation; Airclo® polyester hollow yarns for efficient control of body temperature; and, finally, polyester Trevira® and viscose Seacell® for antimicrobial activity. According to the results, Coolmax® for moisture management, Airclo® for thermal control and Seacell® for antimicrobial activity present the best performances as technical textiles for sportswear for the respective specific functional property.


2014 ◽  
Vol 106 (4) ◽  
pp. 359-365 ◽  
Author(s):  
D. Raja ◽  
C. Prakash ◽  
G. Gunasekaran ◽  
C.V. Koushik

Sign in / Sign up

Export Citation Format

Share Document