loop length
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 37)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Michelle N Vu ◽  
Kumari Lokugamage ◽  
Jessica A Plante ◽  
Dionna Scharton ◽  
Bryan A Johnson ◽  
...  

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing 1,2. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates 3. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS, and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated4, and disruption its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site (the FCS, loop length, and glycosylation) are required for efficient SARS-CoV-2 replication and pathogenesis. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher R. Corbeil ◽  
Mahder Seifu Manenda ◽  
Traian Sulea ◽  
Jason Baardsnes ◽  
Marie-Ève Picard ◽  
...  

AbstractThe design of superior biologic therapeutics, including antibodies and engineered proteins, involves optimizing their specific ability to bind to disease-related molecular targets. Previously, we developed and applied the Assisted Design of Antibody and Protein Therapeutics (ADAPT) platform for virtual affinity maturation of antibodies (Vivcharuk et al. in PLoS One 12(7):e0181490, 10.1371/journal.pone.0181490, 2017). However, ADAPT is limited to point mutations of hot-spot residues in existing CDR loops. In this study, we explore the possibility of wholesale replacement of the entire H3 loop with no restriction to maintain the parental loop length. This complements other currently published studies that sample replacements for the CDR loops L1, L2, L3, H1 and H2. Given the immense sequence space theoretically available to H3, we focused on the virtual grafting of over 5000 human germline-derived H3 sequences from the IGMT/LIGM database increasing the diversity of the sequence space when compared to using crystalized H3 loop sequences. H3 loop conformations are generated and scored to identify optimized H3 sequences. Experimental testing of high-ranking H3 sequences grafted into the framework of the bH1 antibody against human VEGF-A led to the discovery of multiple hits, some of which had similar or better affinities relative to the parental antibody. In over 75% of the tested designs, the re-designed H3 loop contributed favorably to overall binding affinity. The hits also demonstrated good developability attributes such as high thermal stability and no aggregation. Crystal structures of select re-designed H3 variants were solved and indicated that although some deviations from predicted structures were seen in the more solvent accessible regions of the H3 loop, they did not significantly affect predicted affinity scores.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amany Khalil ◽  
Pavla Těšinová ◽  
Abdelhamid R.R. Aboalasaad

Abstract The aim of this work is to estimate the effect of loop length and Lycra weight percent (Lwp) on the geometrical and thermo-physiological comfort of elastic plain knitted fabric. Fifty single jersey knitted fabric samples were produced at five levels of Lycra weight percent (Lwp) (4%, 5%, 6%, 7%, and 8%) and loop length (2.7 mm, 2.9 mm, 3.1 mm, 3.3 mm, and 3.4 mm) with full plaited (fp) and half plaited (hp) of bare Lycra. The thermo-physiological comfort properties (thermal conductivity, absorptivity, and water vapor permeability), air permeability, and geometrical properties were measured at standard of each one. The results showed that the elastic single jersey knitted fabric thickness ranged between 3.12 times and 4.2 times of the yarn diameter (d). The fabric thickness increased when loop length is increased and decreased when Lwp is increased. The thermal conductivity, absorptivity, and water vapor resistance (WVR) decreased with Lwp increasing.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yaser Safi ◽  
Reza Amid ◽  
Mahdi Kadkhodazadeh ◽  
Hamed Mortazavi ◽  
Mohamad Payam Sharifi ◽  
...  

Abstract Background Bone volume plays a pivotal role in the success of dental implant treatment. Autogenous bone grafts should be harvested from reliable sites in the maxillofacial region. This study sought to assess the quantity and quality of bone in the mandibular symphysis for autogenous bone graft harvesting using cone-beam computed tomography (CBCT). Methods This cross-sectional study evaluated the CBCT scans of 78 adults presenting to three oral and maxillofacial radiology centers. The vertical (VD) and horizontal (HD) alveolar bone dimensions, cortical thickness (CT), and cancellous to cortical bone ratio (C/C) were measured in the interforaminal region of the mandible at the sites of central incisor to first premolar teeth. The interforaminal distance (ID) and the anterior loop length were also measured. Nonparametric statistical tests were used to analyze the data with respect to sex, age, and tooth position. Results The median VD, HD, and CT of the symphysis were 20.21 (3.26), 4.13 (0.37), and 2.25 (0.23) mm, respectively. The median C/C was 1.51 (0.11). The median ID was 52.24 (8.24) mm, and the median anterior loop length was 1.82 (1.06) mm. Significant differences were observed in all parameters among different teeth. Most of the measured parameters were greater in males compared with females. There were significant differences in ID, VD, and CT between different age groups. Conclusions The quantity and quality of the available bone in the mandibular symphysis for bone graft harvesting vary by gender, age, and harvesting site, necessitating careful preoperative evaluation.


Author(s):  
Mohamed Ghaith Chakroun ◽  
Sofien Benltoufa ◽  
Faten Fayala

Many parameters affect sportswear comfort. Therefore, we selected five sportswear fabrics designed for jogging and hiking T-shirts to study their structural characteristics and to investigate the influence of these characteristics on the clothing comfort properties. The areal weight, the thickness, the loop length and the course and wales densities were calculated. Investigations were performed on air permeability, water vapor resistance and drying time/rate properties of selected fabrics. We found that an increase in the mass per square meter and in thickness decreases the air permeability and increases the water vapor resistance of knitted fabrics. The air permeability is proportional to the loop length, while the water vapor resistance is inversely proportional to the loop length. Finally we did not find any significant relation between the fabric’s structure characteristics and the drying time/rate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Senthil Kumar B. ◽  
Murugan T.

Purpose This paper aims to investigate on composite fabrics to develop the improved sleeping bag using trilayered textile structures. A thermal comfort analysis of fabrics is essential to design an enhanced type of sleeping bag. Design/methodology/approach In this study, optimizing thermal and permeability properties of different combinations of trilayer composite fabrics was done. The inner layer was 100% wool-knitted single jersey fabric. The middle layer was polyester needle punched non-woven fabric. The outermost layer was nylon-based Core-Tex branded waterproof breathable fabric. Five variations in wool-knitted samples were developed by changing the loop length and yarn count to optimize the best possible combination. Two different polyester non-woven fabrics have been produced with the changes in bulk density. Twelve trilayer composite fabric samples have been produced, and thermal comfort properties such as thermal conductivity, thermal absorptivity, thermal resistance, air permeability and relative water vapour permeability have been analysed. Findings Among the 12 samples, one optimized sample has been found with the specification of 100% wool with 25 Tex yarn linear density having 4.432-mm loop length inner-layered fabric, 96 g/m2 polyester nonwoven fabric as the middle layer, and 220 g/m2 Nylon-Core tex branded outermost layer. All the functional properties of the composite fabric are significantly different with the knitted wool fabrics and polyester nonwoven fabrics, which have been confirmed by analysis of variance study. Originality/value This research work supports for producing sleeping bag with enhanced comfort level.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3059
Author(s):  
Edgaras Arbataitis ◽  
Daiva Mikucioniene ◽  
Liudmyla Halavska

This work presents a simple and flexible method for theoretical calculation of the main structural parameter of weft-knitted fabrics’—the loop length and one of the main characteristics of textile fabrics—area density, which combines physical and economical aspects. It helps to predict many physical properties and the mechanical behaviour, which is especially important for protective textiles, and allows predicting potential yarn consumption for knitting of one square meter of the fabric. The main idea of the proposed method, based on Čiukas geometrical model, is to calculate different parts of the knitted loop separately, which gives a great flexibility of such modelling. The proposed theoretical formulas can be used for various weft-knitted structures, give very low errors to empirical calculations, and are easy to use. It is a big advantage because known geometric models only allow a loop length of some particular pattern to be calculated, usually of single jersey or rib 1 × 1.


2021 ◽  
pp. 004051752110142
Author(s):  
Jorge Llinares Berenguer ◽  
Pablo Díaz-García ◽  
Pau Miró Martinez

This study investigated existing dimensional variations in knitted fabrics produced by weft-knitting technology for knitting and dry relaxation, dyed and dry relaxation, and dyed and wash relaxation for the interlock, 1 × 1 rib, and single jersey structures. This paper demonstrates that once the structure has been knitted, the shape that the loop takes in the fabric, and loop length and loop width, for each relaxation state will be the main factor responsible for dimensional variations in cotton knitted fabrics. It also shows how loop length affects knitted fabric dimensions when knitting machine parameters are modified by varying the use of feeders, and obtaining more loosely or more tightly knitted fabrics. In this study a model to predict the longitudinal and transversal shrinkage of interlock, 1 × 1 rib, and single jersey fabrics after the dyeing process is presented. This avoids following the conventional analysis procedure according to Standard UNE-EN ISO 6330 of September 2012 and, thus, avoids investing relatively long calculation times, which speeds up the production process by avoiding product lots being stopped. These results are important for textile industry technicians as they substantially simplify production calculations in weft-knitted fabrics companies. This work offers an effective method for predicting the longitudinal and transversal shrinkage and width of knitting fabrics after the dyeing process from the loop dimension after the knitting process. The application of the study results may help businesses to significantly save time and, consequently, imply an intermediate product stock investment saving.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gamini Lanarolle

Purpose The purpose of this paper is to develop mathematical relationships to calculate the loop length to knit compact plain knitted fabrics and to validate the model using the fabric parameters of commercial fabrics. Design/methodology/approach Ellipse defines the shape of the head of a knitted loop and straight lines define the arms of a knitted loop. The mathematical relationships developed relate the yarn count to the loop length of compact knitted fabrics. The experimental data and the data from previous similar research validate the accuracy of the mathematical model. Findings The model can calculate loop lengths to knit compact plain knitted fabrics in terms of thickness of the yarn and the coefficient defined to express the ratio of minor axis to major axis of the ellipse that defines the shape of the head of the loop. The mathematical model can deliver several loop lengths to produce compact plain knitted fabrics for different values of this coefficient. For commercial fabrics the error of the model was 0.53%. Originality/value The present model defines the head of the loop as an ellipse. The uniqueness of the present model is that several ellipses can exist for any given yarn thickness for a range of values assigned to the minor axis of the ellipse. The accuracy of the model against experimental data ascertains that the model is closer to the reality for commercial fabrics and proves the uniqueness of the model. Further, this model is an ideal and a simple model to introduce knitted loop configurations in teaching knitted fabric geometry.


Sign in / Sign up

Export Citation Format

Share Document