yarn twist
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Muhammad Ali Zeeshan ◽  
Zamir Ahmed Abro ◽  
Abdul Malik Rehan ◽  
Ahmer Hussain Shah ◽  
Nazakat Ali Khoso ◽  
...  

Abstract Cotton is the most commonly used natural fiber and has a significant contribution to the production of yarn manufacturing. This yarn is subsequently utilized for the production of fabrics, garments, and other textile products. The quality of the end product depends on the selection of an appropriate spinning process and output parameters. Numerous methods and processes are involved in the production of yarn. Ring spinning machine is most commonly used for the production of cotton spun yarn. It is necessary to optimize the process parameters of ring-spun yarn without compromising on quality and production. In this research work; these parameters have been optimized by applying the multiple linear regression analysis. The process parameters (especially spindle speed, twist and yarn diameter) and their effect on yarn quality have been discussed in detail. Total 135 ring-spun yarn samples have been produced under three different levels of spindle speed, twist, and linear density. These yarn samples are categorized as 8 Ne, 16 Ne, and 24 Ne at three different Twist multipliers (3.8, 4.0, and 4.2) and different revolutions per minute of the spindle (9500 rpm, 10500rpm, and 11500 rpm). The models have been designed to predict the quality of ring-spun by utilizing USTER evenness tester data. The Count of yarn, yarn twist, and spindle speed were selected as a predictor. The multiple regression method has been used to find out the relation between the process parameters and yarn quality characteristics. The high values of R2 (the coefficient of determination) showed the relationships in the prediction model.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mine Akgun ◽  
Recep Eren ◽  
Fatih Suvari ◽  
Tugba Yurdakul

Abstract This study presents the effects of a novel plied yarn structure consisting of different yarn components and yarn twist levels on the Poisson's ratio and auxetic behavior of yarns. The plied yarn structures are formed with bulky and soft yarn components (helical plied yarn [HPY], braided yarn, and monofilament latex yarn) and stiff yarn components (such as high tenacity [HT] and polyvinyl chloride [PVC]-coated polyester yarns) to achieve auxetic behavior. Experimental results showed that as the level of yarn twist increased, the Poisson's ratios and the tensile modulus values of the plied yarns decreased, but the elongation values increased. A negative Poisson's ratio (NPR) was obtained in HT–latex and PVC–latex plied yarns with a low twist level. The plied yarns formed with braid–HPY and braid–braid components gave partial NPR under tension. A similar result was achieved for yarns with HT–latex and PVC–latex components. Since partial NPR was seen in novel plied yarns with braided and HPY components, it is concluded that yarns formed with bulky–bulky yarn components could give an auxetic performance under tension.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sh. Shukhratov ◽  
R. Milašius ◽  
K. Gafurov ◽  
J. Gafurov

Abstract This paper presents the features of yarn structure formation on spinning machine, i.e. yarn twist change when winding. It was considered that the twist distribution was one of the reasons for its decrease along the formed yarn. In this paper, based on analysis of changes in thickness and twist due to axial deformation, we consider a yarn moving at constant speed. Moving dynamics of yarn are studied here by using Euler variables. The correspondences of forward and reverse twist waves’ distribution speeds on presented frequency at various vibration forms are obtained. The parameters of Doppler effect for the waves distributed along the yarn are determined.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jindan Lyu ◽  
Longdi Cheng ◽  
Bugao Xu ◽  
Zhihong Hua

Abstract Lateral compact spinning with pneumatic groove is a spinning process to gather fibers by common actions of airflow and mechanical forces. Compared with ring spinning, it can more effectively reduce yarn hairiness and enhance yarn strength. However, fiber motion in the agglomeration area is complex. And, it is important to establish a new fiber model to accurately describing the fiber motion. The objectives of this research were to create a new fiber model to simulate the agglomeration process, to analyze yarn properties of the lateral compact spinning with pneumatic groove, and to compare with other spinning yarns through a series of tests. The new fiber model was based on the finite element method implemented in MATLAB and was to show the fiber motion during the agglomeration area. The simulation generated results were close to the real motion of fibers in spinning. In the lateral compact spinning with pneumatic groove, fiber bundle through the agglomeration area can be gathered, and the output of the fiber bundle was nearly to cylinder before yarn twisted. The experiments demonstrated that the lateral compact spinning with pneumatic groove can improve the yarn properties: increase the yarn twist, enhance the yarn strength, and reduce the yarn hairiness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernhard Ungerer ◽  
Ulrich Müller ◽  
Antje Potthast ◽  
Enrique Herrero Acero ◽  
Stefan Veigel

AbstractIn the development of structural composites based on regenerated cellulose filaments, the physical and chemical interactions at the fibre-matrix interphase need to be fully understood. In the present study, continuous yarns and filaments of viscose (rayon) were treated with either polymeric diphenylmethane diisocyanate (pMDI) or a pMDI-based hardener for polyurethane resins. The effect of isocyanate treatment on mechanical yarn properties was evaluated in tensile tests. A significant decrease in tensile modulus, tensile force and elongation at break was found for treated samples. As revealed by size exclusion chromatography, isocyanate treatment resulted in a significantly reduced molecular weight of cellulose, presumably owing to hydrolytic cleavage caused by hydrochloric acid occurring as an impurity in pMDI. Yarn twist, fibre moisture content and, most significantly, the chemical composition of the isocyanate matrix were identified as critical process parameters strongly affecting the extent of reduction in mechanical performance. To cope with the problem of degradative reactions an additional step using calcium carbonate to trap hydrogen ions is proposed.


2021 ◽  
Vol 20 (1) ◽  
pp. 28-41
Author(s):  
Ismail Mousa Rakha ◽  
Rizk Mahmoud El-Bealy ◽  
M. El-Messiry
Keyword(s):  

2021 ◽  
pp. 152808372098720
Author(s):  
Hussein Kommur Dalfi ◽  
Muhammad Tausif ◽  
Zeshan yousaf

High modulus/high strength continuous fibres are used extensively for manufacturing textile preforms, as a reinforcement, for composites due to their excellent specific properties. However, their brittle behaviour and tendency to separate easily into individual filaments or bundles can lead to damages during manufacturing processes such as weaving and braiding. Thus, the critical step in the development of an optimal yarn for textile-reinforced composites is to find an optimum twist, which results in a minimum loss of properties of the composite laminates, while maintaining good processability and sufficient strength for textile and/or composite manufacturing. In this study, twist level has been varied to improve the handling and tensile properties of S-glass yarns (i.e. tensile strength). Varying levels of yarn twist (15–40 twists metre−1) were employed to study its impact on the tensile properties (i.e. tensile strength, modulus, elongation at break etc.). Furthermore, the effect of twist on the tensile properties of non-crimp cross-ply composites produced via vacuum infusion process was studied. It was observed that mechanical performance (i.e. tensile strength properties) of twisted yarns is improved up to 30 twists metre−1 while it is deteriorated at 40 twists metre−1. At yarn level, the experimental results were compared with theoretical estimations utilizing existing models for twisted yarns properties. Discrepancies were observed between experimental and theoretical results especially for high level of twist. The tensile strength and elongation of S-glass cross-ply composites at all levels of twist were higher compared to the composite laminates manufactured by using non-twisted yarns. At composite level, the experimental results were also computed employing rule of mixture and good agreement was observed between experimental and predicted results.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
R. Rathinamoorthy ◽  
S. Raja Balasaraswathi

PurposeMicrofiber is one of the major sources of microplastic emission into the environment. In recent times, research on microfiber has gained momentum, and research across different disciplines was performed. However, no complete study was performed from the viewpoint of textiles to analyse the microfiber shedding behaviour by relating the properties textiles. The purpose of this paper is to analyse the microfiber shedding behaviour in textiles.Design/methodology/approachArticles on the microfiber shedding across different disciplines were collected and analysed systematically to identify the influencing factor. The influence of laundry parameters is found to be majorly discussed section, yet very few research data is found on the effect of yarn and fabric properties on the microfiber shedding.FindingsMost of the articles listed laundry detergent addition, higher temperature, use of softeners, type of washing machines used and amount of liquid used as the major factors influencing the fiber shedding. Concerning the fiber and yarn characteristics, yarn twist, fiber type (staple/filament), method of production, fabric structure and specific density are reported as influencing factors. Some articles highlighted the influence of ageing of textiles on the fiber shedding.Originality/valueThe review identified the research gap in the textile sector and reports that so far, no research performed on microfiber shedding with the textile parameters. The review further urges the importance of research works to be performed in the textile by considering the fabric and yarn properties.


Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 59
Author(s):  
Dunja Šajn Gorjanc ◽  
Neža Sukič

The aim of this research was to determine the optimum twist equation for ring-spun yarns. The yarn twist can be calculated by different equations. With the research, we tried to find the appropriate equation to determine the yarn twist, which is determined by the values of yarn strength and hairiness. In the research, yarns from long staple combed cotton rovings and of different fineness (10 tex, 11.8 tex, 20 tex and 29.4 tex) were analyzed. The yarn twist was calculated using the equations of Koechlin and Laetsch. The analyzed yarns were produced in the spinning mill on the laboratory ring spinning machine Spinntester. In the second part of the investigation, yarn strength and hairiness were analyzed as a function of yarn twist. The results showed that Laetsch’s equation is suitable for determining the twist for yarns with a fineness of 10 tex, 11.8 tex, 20 tex and 29.4 tex, since, in this case, the calculated number of yarn threads is higher and thus the strength and elongation at break are also higher. The yarn hairiness is higher in analyzed samples for yarns with the twist calculated according to the Koechlin’s equation.


2020 ◽  
pp. 004051752093846
Author(s):  
Ruiqi Shao ◽  
Longdi Cheng ◽  
Wenliang Xue ◽  
Yanping Yu ◽  
Ning Pan

The spinning triangle is an important area in the spinning process, and the shape of the spinning triangle influences the yarn qualities. This paper aims to theoretically study the effects of the spinning parameters on the shape of the spinning triangle. In this paper, a model of the spinning triangle considering force equilibrium and torque equilibrium was built. The initial strain of fibers in the spinning triangle was determined by the profile of the spinning triangle. The initial height of the spinning triangle was obtained by the width of the spinning triangle and the twist angle. Based on the initial condition and boundary condition in the model, the displacements of the twisting point were obtained. With the displacements of the twisting point, the height of the spinning triangle and the deviation angle of the center fiber in the final spinning triangle, which represent the shape of the spinning triangle, were calculated. In the analysis, the spinning tension, yarn twist, and yarn radius were chosen as the independent parameters to analyze the geometric change of the spinning triangle.


Sign in / Sign up

Export Citation Format

Share Document