An indicator of plant species richness of semi-natural habitats and crops on arable farms

2005 ◽  
Vol 109 (1-2) ◽  
pp. 166-174 ◽  
Author(s):  
A.G.E. Manhoudt ◽  
H.A. Udo de Haes ◽  
G.R. de Snoo
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng Gong ◽  
Liangtao Li ◽  
Jan C. Axmarcher ◽  
Zhenrong Yu ◽  
Yunhui Liu

AbstractIn the intensively farmed, homogenous agricultural landscape of the North China Plain, family graveyards form distinct cultural landscape features. In addition to their cultural value, these graveyards represent semi-natural habitat islands whose potential roles in biodiversity conservation and ecological functioning has remained poorly understood. In this study, we investigated plant species richness on 199 family graveyards of different ages and sizes. In accordance with biogeography theory, both overall and insect-pollinated plant species richness increased with area and age of graveyards. Even small graveyards show a strong potential for conserving local plant richness, and a mosaic of both large and small family graveyards could play an important role in the conservation of farmland biodiversity and related ecosystem functions. The launch of agri-environmental measures that conserve and create semi-natural habitats, in turn benefitting agricultural biodiversity and ecological functioning, has proven difficult in China due to the shortage of dispensable arable land. Given the great value of family graveyards as semi-natural habitats reflected in our study, we propose to focus preliminary efforts on conserving these landscape features as existing, widespread and culturally important semi-natural habitat islands. This would represent an effective, complementary policy to a subsequent re-establishment of other semi-natural habitats for the conservation of biodiversity and ecological functioning in agricultural landscapes.


2020 ◽  
Author(s):  
Petra Guy ◽  
Simon Smart ◽  
Colin Prentice

SummaryThe loss of plant biodiversity in Great Britain is a major concern, with a fifth of species endangered or vulnerable according to the latest IUCN Red List. The Government’s 25 Year Plan for the environment aims to halt this loss and build new habitats, including new woodlands. To ensure that biodiversity loss is halted in existing woodlands and gain is maximised in new ones, we need to better understand which drivers have been most influential in controlling biodiversity. Here we focus on vascular plant species’ richness.Previous attempts to explain plant species richness have mainly focussed on alpha diversity in a consistent, fixed unit area. Here, we additionally undertake a novel analysis of the effects of environmental heterogeneity and abiotic factors on species-area relationships derived from 16 randomly placed quadrats in each of 103 semi-natural, broad-leaved woodlands across Britain. Species-area relationships were examined at two scales (4m2 to 200m2 and 200m2 to 3200m2) to explore the relationship between the drivers of species richness and the exponent z, of the canonical species-area curve, S = cAz. We also explore the use of a new metric ζr, based on zeta diversity to quantify heterogeneity. Zeta diversity quantifies the number of species shared between multiple combinations of plots.Habitat heterogeneity increased species richness, as did the proximity of the woodlands to surrounding natural habitats. Higher levels of soil organic matter and the progression of woodlands to later successional stages, decreased species richness. Richness was also seen to have a unimodal response to soil acidity with a peak around pH 6. At the smaller scale, heterogeneity elements in the woodland such as riparian zones or coppicing led to an increase in the value of the exponent of the species area curve. At the larger scale, species turnover led to an increase in the exponent of the curves while succession led to a decrease. At both scales, soil organic matter content had a negative effect. ζr was found to be a significant and important variable and to affect both species richness and the slope of the species accumulation curves at larger scales.SynthesisHabitat heterogeneity measures included the presence of coppicing, open areas such as rides and riparian zones and the difference between species assemblages in different plots in the woodland. Results suggest that to maximize vascular plant diversity, woodlands should be managed for heterogeneity. In addition, the increase in richness with exposure to surrounding natural habitats suggests that woodlands benefit from being embedded in more benign habitats and further, that land management surrounding woodlands has a clear role to play in supporting biodiversity within woodlands. This is an area were Agri-environment schemes have an important role.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 189
Author(s):  
N’golo Koné ◽  
Kolotchèlèma Silué ◽  
Souleymane Konaté ◽  
Karl Linsenmair

Termites are one of the major components of tropical ecosystems. However, the ecological and biological variables determining the structure of their communities within natural habitats are less documented in general and especially in the Comoe National Park, a Sudano-Guinean savanna zone located in the north-eastern part of Côte d’Ivoire (West Africa). Using a standardized method of belt transects, the structure of termite’s communities was estimated within habitats differing in the structure of their vegetation, soil characteristics, and the disturbance level caused by annual occurrences of bushfires. The effect of a set of environmental variables (habitat type, occurrence of annual bushfire, woody plant density, woody plant species richness, and soil physicochemical parameters) was tested on the habitat-specific recorded termite species. Sixty species of termites belonging to 19 genera, seven subfamilies and two families, namely Rhinotermitidae (Coptotermitinae and Rhinotermitinae) and Termitidae (Apicotermitinae, Cubitermitinae, Macrotermitinae, Nasutitermitinae, and Termitinae) were sampled. These species were assigned to the four feeding groups of termites: fungus growers (18 species), wood feeders (17 species), soil feeders (19 species) and the grass feeders (6 species). The highest diversity of termites was encountered in forest habitats, with 37 and 34, respectively, for the gallery forest and the forest island. Among savanna habitats, the woodland savanna was identified as the most diversified habitat with 32 recorded species, followed by the tree savanna (28 species) and the grassy savanna (17 species). The distribution of termite species and their respective feedings groups was determined by the habitat type and a set of environmental variables such as Woody Plant Diversity (WPD), Woody plant Families Diversity (WPFD), and Organic Carbon (OC). The annual Fire Occurrence (FO) was found to indirectly impact the characteristics of termite assemblages within natural habitats via their respective Herbaceous Species Richness (HSR) and Woody Plant Species Richness (WPSR). In summary, the spatial heterogeneity of the Comoe National Park, modeled by the uncontrolled annual bushfire, offers a diversified natural habitat with an important variety of termite-habitat-specific species, probably due to the food preference of these organisms and its relatively good conservation status.


Sign in / Sign up

Export Citation Format

Share Document