scholarly journals High matrix vegetation decreases mean seed dispersal distance but increases long wind dispersal probability connecting local plant populations in agricultural landscapes

2021 ◽  
Vol 322 ◽  
pp. 107678
Author(s):  
Sissi Lozada-Gobilard ◽  
Florian Jeltsch ◽  
Jinlei Zhu
2021 ◽  
Author(s):  
Sissi Donna Lozada Gobilard ◽  
Florian Jeltsch ◽  
Jinlei Zhu

Abstract Background Seed dispersal plays an important role in population dynamics in agricultural ecosystems, but the effects of surrounding vegetation height on seed dispersal and population connectivity on the landscape scale have rarely been studied. Understanding the effects of surrounding vegetation height on seed dispersal will provide important information for land use management in agricultural landscapes to prevent the spread of undesired weeds or enhance functional connectivity. Methods We used two model species, Phragmites australis and Typha latifolia, growing in small natural ponds known as kettle holes, in an agricultural landscape to evaluate the effects of surrounding vegetation height on wind dispersal and population connectivity between kettle holes. Seed dispersal distance and the probability of long-distance dispersal (LDD) were simulated with the mechanistic WALD model under three scenarios of “low”, “dynamic” and “high” surrounding vegetation height. Connectivity between the origin and target kettle holes was quantified with a connectivity index adapted from Hanski and Thomas (1994). Results Our results show that mean seed dispersal distance decreases with the height of surrounding matrix vegetation, but the probability of long-distance dispersal (LDD) increases with vegetation height. This indicates an important vegetation-based trade-off between mean dispersal distance and LDD, which has an impact on connectivity. Conclusions Matrix vegetation height has a negative effect on mean seed dispersal distance but a positive effect on the probability of LDD. This positive effect and its impact on connectivity provide novel insights into landscape level (meta-)population and community dynamics — a change in matrix vegetation height by land use or climatic changes could strongly affect the spread and connectivity of wind-dispersed plants. The opposite effect of vegetation height on mean seed dispersal distance and the probability of LDD should therefore be considered in management and analyses of future land use and climate change effects.


2019 ◽  
Vol 286 (1894) ◽  
pp. 20182007 ◽  
Author(s):  
E. Rehm ◽  
E. Fricke ◽  
J. Bender ◽  
J. Savidge ◽  
H. Rogers

Frugivores play differing roles in shaping dispersal patterns yet seed dispersal distance is rarely quantified across entire communities. We model seed dispersal distance using gut passage times and bird movement for the majority (39 interactions) of known bird–tree interactions on the island of Saipan to highlight differences in seed dispersal distances provided by the five avian frugivores. One bird species was found to be a seed predator rather than a disperser. The remaining four avian species dispersed seeds but differences in seed dispersal distance were largely driven by interspecific variation in bird movement rather than intraspecific variation in gut passage times. The median dispersal distance was at least 56 m for all species-specific combinations, indicating all species play a role in reducing high seed mortality under the parent tree. However, one species—the Micronesian Starling—performed 94% of dispersal events greater than 500 m, suggesting this species could be a key driver of long-distance dispersal services (e.g. linking populations, colonizing new areas). Assessing variation in dispersal patterns across this network highlights key sources of variation in seed dispersal distances and suggests which empirical approaches are sufficient for modelling how seed dispersal mutualisms affect populations and communities.


1995 ◽  
Vol 73 (7) ◽  
pp. 1036-1045 ◽  
Author(s):  
D. F. Greene ◽  
E. A. Johnson

Long-distance seed dispersal figures prominently in most plant conservation biology arguments, yet we possess little more than anecdotes concerning the relationship among deposition (seeds/m2), source strength (seeds/m2), and distance. In this paper we derive two simple models for long-distance deposition. The models are tested at the scale of 100–1600 m from the source and found to be within 5-fold of the observed deposition. There is no discernable decline in deposition for the range 300–1600 m. While we hesitate to extend model predictions to greater distances, both the models and the empirical results allow us to assert that rare wind-dispersed species in woodlots (dispersal distance around 1 km) are effectively isolated from one another at the temporal scale of 1000 years. Key words: plant conservation biology, wind dispersal of seeds, metapopulations.


2016 ◽  
Vol 31 (6) ◽  
pp. 881-889 ◽  
Author(s):  
Yumiko Mise ◽  
Koji Yamazaki ◽  
Masashi Soga ◽  
Shinsuke Koike

2011 ◽  
Vol 99 (6) ◽  
pp. 1299-1307 ◽  
Author(s):  
Fiona J. Thomson ◽  
Angela T. Moles ◽  
Tony D. Auld ◽  
Richard T. Kingsford

2019 ◽  
Vol 9 (16) ◽  
pp. 8965-8977 ◽  
Author(s):  
Tiziana A. Gelmi‐Candusso ◽  
Ronald Bialozyt ◽  
Darja Slana ◽  
Ricardo Zárate Gómez ◽  
Eckhard W. Heymann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document