Persistence of MODIS evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains

2015 ◽  
Vol 200 ◽  
pp. 78-91 ◽  
Author(s):  
Melanie K. Vanderhoof ◽  
Christopher A. Williams
2013 ◽  
Vol 10 (7) ◽  
pp. 11935-11968 ◽  
Author(s):  
M. Vanderhoof ◽  
C. A. Williams ◽  
Y. Shuai ◽  
D. Jarvis ◽  
D. Kulakowski ◽  
...  

Abstract. Mountain pine beetle (MPB) outbreaks in North America are widespread and have potentially-persistent impacts on forest albedo and associated radiative forcing. This study utilized multiple datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains to quantify the full radiative forcing impact of outbreak events for decades after outbreak (0 to 60 yr) and the role of outbreak severity in determining that impact. Change in annual albedo and radiative forcing peaked at 14–20 yr post-outbreak (0.06 ± 0.006 and −0.8 ± 0.1 W m−2, respectively) and recovered to pre-outbreak levels by 30–40 yr post-outbreak. Change in albedo was significant in all four seasons, but strongest in winter with the increased visibility of snow (radiative cooling of −1.6 ± 0.2 W m−2, −3.0 ± 0.4 W m−2, and −1.6 ± 0.2 W m−2 for 2–13 yr, 14–20 yr and 20–30 yr post-outbreak, respectively). Change in winter albedo and radiative forcing also increased with outbreak severity (percent tree mortality). Persistence of albedo effects are seen as a function of the growth rate and species composition of surviving trees, and the establishment and growth of both understory herbaceous vegetation and tree species, all of which may vary with outbreak severity. The establishment and persistence of deciduous trees was found to increase the temporal persistence of albedo effects. MPB induced changes to radiative forcing may have feedbacks for regional temperature and precipitation, which could impact future MPB outbreaks dynamics.


2014 ◽  
Vol 11 (3) ◽  
pp. 563-575 ◽  
Author(s):  
M. Vanderhoof ◽  
C. A. Williams ◽  
Y. Shuai ◽  
D. Jarvis ◽  
D. Kulakowski ◽  
...  

Abstract. Mountain pine beetle (MPB) outbreaks in North America are widespread and have potentially persistent impacts on forest albedo and associated radiative forcing. This study utilized multiple data sets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains to quantify the full radiative forcing impact of outbreak events for decades after outbreak (0–60 yr) and the role of outbreak severity in determining that impact. Change in annual albedo and radiative forcing peaked at 14–20 yr post-outbreak (0.06 ± 0.006 and −0.8 ± 0.1 W m−2, respectively) and recovered to pre-outbreak levels by 30–40 yr post-outbreak. Change in albedo was significant in all four seasons, but strongest in winter with the increased visibility of snow (radiative cooling of −1.6 ± 0.2 W m−2, −3.0 ± 0.4 W m−2, and −1.6 ± 0.2 W m−2 for 2–13, 14–20 and 20–30 yr post-outbreak, respectively). Change in winter albedo and radiative forcing also increased with outbreak severity (percent tree mortality). Persistence of albedo effects are seen as a function of the growth rate and species composition of surviving trees, and the establishment and growth of both understory herbaceous vegetation and tree species, all of which may vary with outbreak severity. The establishment and persistence of deciduous trees was found to increase the temporal persistence of albedo effects. MPB-induced changes to radiative forcing may have feedbacks for regional temperature and the hydrological cycle, which could impact future MPB outbreaks dynamics.


2015 ◽  
Vol 61 (4) ◽  
pp. 689-702 ◽  
Author(s):  
Jennifer S. Briggs ◽  
Todd J. Hawbaker ◽  
Don Vandendriesche

2011 ◽  
Vol 81 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Martin Simard ◽  
William H. Romme ◽  
Jacob M. Griffin ◽  
Monica G. Turner

1985 ◽  
Vol 117 (3) ◽  
pp. 267-275 ◽  
Author(s):  
L. Safranyik ◽  
D.A. Linton

AbstractThe relationship between the density of insect holes in the bark (X1) and the density of emerged mountain pine beetles (Y) was investigated in naturally infested lodgepole pine in south-central British Columbia. The density of exit and ventilation holes (Ho) that were present in the bark prior to emergence by mountain pine beetle averaged 10% of all holes present following the emergence period. There was a weak but significant inverse relationship between Ho and both phloem thickness and density of emerged mountain pine beetles. Painting the bark with light-color latex paint did not affect survival or the temporal pattern of emergence by mountain pine beetle but ensured identification and greatly enhanced counting of fresh exit holes. Of the several regression models investigated, the relation between Y and both X1 and X2 (= X1 – Ho) was best fitted by a log-log linear model. A method is suggested for setting limits on the size of exit holes cut by mountain pine beetle in order to exclude from X2 much of the variation caused by exit holes cut by associated insects. A simple mathematical model was developed of the relationship between mean density of exit holes and the density of emerged mountain pine beetles.


Ecoscience ◽  
2012 ◽  
Vol 19 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Jeremy M. Smith ◽  
Sarah J. Hart ◽  
Teresa B. Chapman ◽  
Thomas T. Veblen ◽  
Tania Schoennagel

Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 34 ◽  
Author(s):  
Kevin Moriarty ◽  
Antony S. Cheng ◽  
Chad M. Hoffman ◽  
Stuart P. Cottrell ◽  
Martin E. Alexander

The recent mountain pine beetle outbreak affecting lodgepole pine forests in the Rocky Mountains has created a novel fire environment for wildland firefighters. This paper presents results from an examination of firefighters’ observations of fire behavior in post-outbreak lodgepole pine forests, with a focus on what they considered surprising from a fire behavior standpoint and how this in turn affected their suppression tactics. The surprises in fire behavior experienced by firefighters during the red phase of post-outbreak forests included an elevated level of fire spread and intensity under moderate weather and fuel moisture conditions, increased spotting, and faster surface-to-crown fire transitions with limited or no ladder fuels. Unexpectedly, during the gray phase in mountain pine beetle-attacked stands, crown ignition and crown fire propagation was observed for short periods of time. Firefighters are now more likely to expect to see active fire behavior in nearly all fire weather and fuel moisture conditions, not just under critically dry and windy situations, and across all mountain pine beetle attack phases, not just the red phase. Firefighters changed their suppression tactics by adopting indirect methods due to the potential fire behavior and tree-fall hazards associated with mountain pine beetle-attacked lodgepole pine forests.


Sign in / Sign up

Export Citation Format

Share Document