Peer review report 1 on “High resolution surface radiation products for studies of regional energy, hydrologic and ecological processes over Heihe river basin, northwest China”

2016 ◽  
Vol 217 ◽  
pp. 303
Author(s):  
Anonymous
2017 ◽  
Vol 18 (12) ◽  
pp. 3075-3101 ◽  
Author(s):  
Yi Yang ◽  
Jianping Tang ◽  
Zhe Xiong ◽  
Xinning Dong

Abstract The reliability of three satellite-derived precipitation products, Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 and the Climate Prediction Center morphing technique (CMORPH) satellite-only (CMORPH-RAW) and gauge-corrected versions (CMORPH-CRT), and three gauge-based precipitation datasets, Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), National Climate Center of China Meteorological Administration (CN05.1), and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), is evaluated via comparisons with rain gauge observations from stations over the Heihe River basin (HRB) for the period from 1998 to 2012. The results show that the observed climatology, interannual variability, the detection of precipitation events, and probability density functions (PDFs) are reasonably well represented by the high-resolution precipitation products (HRPPs), with APHRODITE presenting the best performance, CN05.1 and ITPCAS exhibiting similar performances, and CMORPH-CRT showing a poor performance. The bias-correction algorithms applied in CMORPH-CRT improve the accuracy of CMORPH-RAW slightly but fail to improve the rainfall detection skill. TRMM consistently outperforms CMORPH-CRT at various scales, whereas CMORPH-CRT is comparable to TRMM in summer. The spatial correlations, normalized root-mean-square error (NRMSE), and probability of detection (POD) show that all datasets perform better in summer than in winter. Except for CMORPH-RAW, the HRPPs could adequately reproduce the unimodal characteristics of annual cycle, although they overestimate the magnitude of the warm season precipitation. The HRPPs could capture the overall spatial distribution and decadal trend of extreme precipitation indices. However, the satellite-derived products overestimate the wet day precipitation and underestimate the consecutive dry days, although the TRMM generates relatively better results.


Author(s):  
Liu Liu ◽  
Zezhong Guo ◽  
Guanhua Huang ◽  
Ruotong Wang

As the second largest inland river basin situated in the middle of the Hexi Corridor, Northwest China, the Heihe River basin (HRB) has been facing a severe water shortage problem, which seriously restricts its green and sustainable development. The evaluation of climate change impact on water productivity inferred by crop yield and actual evapotranspiration is of significant importance for water-saving in agricultural regions. In this study, the multi-model projections of climate change under the three Representative Concentration Pathways emission scenarios (RCP2.6, RCP4.5, RCP8.5) were used to drive an agro-hydrological model to evaluate the crop water productivity in the middle irrigated oases of the HRB from 2021–2050. Compared with the water productivity simulation based on field experiments during 2012–2015, the projected water productivity in the two typical agricultural areas (Gaotai and Ganzhou) both exhibited an increasing trend in the future 30 years, which was mainly attributed to the significant decrease of the crop water consumption. The water productivity in the Gaotai area under the three RCP scenarios during 2021–2050 increased by 9.2%, 14.3%, and 11.8%, while the water productivity increased by 15.4%, 21.6%, and 19.9% in the Ganzhou area, respectively. The findings can provide useful information on the Hexi Corridor and the Belt and Road to policy-makers and stakeholders for sustainable development of the water-ecosystem-economy system.


Sign in / Sign up

Export Citation Format

Share Document