Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited

2019 ◽  
Vol 275 ◽  
pp. 283-295 ◽  
Author(s):  
Shaobo Sun ◽  
Tao Che ◽  
Hongyi Li ◽  
Tiejun Wang ◽  
Chunfeng Ma ◽  
...  
2017 ◽  
Vol 17 (8) ◽  
pp. 5119-5129 ◽  
Author(s):  
Lei Wang ◽  
Huizhi Liu ◽  
Jihua Sun ◽  
Yaping Shao

Abstract. Eddy covariance measurements from 2012 to 2015 were used to investigate the interannual variation in carbon dioxide exchange and its control over an alpine meadow on the south-east margin of the Tibetan Plateau. The annual net ecosystem exchange (NEE) in the 4 years from 2012 to 2015 was −114.2, −158.5, −159.9 and −212.6 g C m−2 yr−1, and generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT. This was attributed to higher ecosystem respiration (RE) and similar gross primary production (GPP) in 2014 because the GPP increased with the MAT, but became saturated due to the limit in photosynthetic capacity. In the spring (March to May) of 2012, low air temperature (Ta) and drought events delayed grass germination and reduced GPP. In the late wet season (September to October) of 2012 and 2013, the low Ta in September and its negative effects on vegetation growth caused earlier grass senescence and significantly lower GPP. This indicates that the seasonal pattern of Ta has a substantial effect on the annual total GPP, which is consistent with results obtained using the homogeneity-of-slopes (HOS) model. The model results showed that the climatic seasonal variation explained 48.6 % of the GPP variability, while the percentages explained by climatic interannual variation and the ecosystem functional change were 9.7 and 10.6 %, respectively.


2016 ◽  
Author(s):  
Lei Wang ◽  
Huizhi Liu ◽  
Jihua Sun ◽  
Yaping Shao

Abstract. Eddy covariance measurements from 2012 to 2015 were used to investigate the interannual variation in carbon dioxide exchange and its control over an alpine meadow on the southeast margin of the Tibetan Plateau. The annual net ecosystem exchange (NEE) from 2012 to 2015 was −114.2, −158.5, −159.9 and −212.6 g C m−2 yr−1 and generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT. This was attributed to higher ecosystem respiration (RE) and similar gross primary production (GPP) in 2014 because the GPP increased with MAT but became saturated due to the photosynthesis capacity limit. In the spring (March to May) of 2012, lower air temperature (Ta) and drought events delayed grass germination and reduced GPP. In the late wet season (September to October) of 2012 and 2013, the lower Ta in September and its negative effects on vegetation growth caused earlier grass senescence and significantly lower GPP. This indicates that the seasonal pattern of Ta greatly affected the annual total GPP, which is consistent with the result of the homogeneity-of-slopes model. The model shows that the climatic seasonal variation explained 48.6 % of the GPP variability, and the percentage of climatic interannual variation and the ecosystem functional change were 9.7 % and 10.6 %, respectively.


2004 ◽  
Vol 124 (1-2) ◽  
pp. 121-134 ◽  
Author(s):  
Tomomichi Kato ◽  
Yanhong Tang ◽  
Song Gu ◽  
Xiaoyong Cui ◽  
Mitsuru Hirota ◽  
...  

2010 ◽  
Vol 7 (4) ◽  
pp. 1207-1221 ◽  
Author(s):  
L. Zhao ◽  
J. Li ◽  
S. Xu ◽  
H. Zhou ◽  
Y. Li ◽  
...  

Abstract. Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP), Ecosystem Respiration (Reco), and Net Ecosystem Exchange (NEE) were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI). The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2). The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.


2019 ◽  
Vol 29 (4) ◽  
pp. 447-462
Author(s):  
Feng Qin ◽  
M. Jane Bunting ◽  
Yan Zhao ◽  
Quan Li ◽  
Qiaoyu Cui ◽  
...  

2005 ◽  
Vol 47 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Liang ZHAO ◽  
Ying-Nian LI ◽  
Song GU ◽  
Xing-Quan ZHAO ◽  
Shi-Xiao XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document