Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China

2022 ◽  
Vol 312 ◽  
pp. 108715
Author(s):  
Muhammad Hayat ◽  
Jiao Xiang ◽  
Chunhua Yan ◽  
Bowen Xiong ◽  
Bei Wang ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rongfei Zhang

Abstract Because the heat island effect can make cities warmer than their surroundings, it can make urban dwellers uncomfortable and even affect their health, which is particularly pronounced in developed cities in southern China. To reduce the heat island effect and improve the environment, various types of vegetation have been planted in the urban green belt. Though previous studies have been conducted on the beauty, air purification functions and cooling effect of vegetation, little is concentrated on the different cooling effects and control factors of various common shrubs on the heat island effect in cities. In this study, five of the most regionally common shrubs were selected to study the cooling effect in Guangzhou, southern China. The maximum surface temperatures of five shrubs and pavement were compared using infrared temperature sensors from April 1st 2019 to October 31st 2019. Results show that (1) All five shrubs showed noticeable seasonal variation, and the average surface temperatures of the five shrubs were between 38.0 and 42.2 °C during May–August and 30.7–34.1 °C during the other seasons (April, September and October);. (2) Murraya exotica L. exhibited the best cooling effect on the maximum surface temperature. Its value was 44.7 °C, and the absolute difference values of Murraya exotica L. (10.3 ± 1.7 °C) were higher than any other shrub during the study period; (3) Both the LAI (R2 = 0.57, p < 0.01) and plant height (R2 = 0.13, p < 0.01) are control factors of the cooling effect on vegetation surface temperature for the five shrubs. This study revealed the differences in the cooling effect and influencing factors of five regionally common shrubs on the heat island effect. Research on the functional characteristics of plants and plant selection in urban green belts has both theoretical and practical significance.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 206 ◽  
Author(s):  
Qian Wang ◽  
Anna Lintunen ◽  
Ping Zhao ◽  
Weijun Shen ◽  
Yann Salmon ◽  
...  

Prerequisite for selection of appropriate tree species in afforestation programs is to understand their water use strategy. Acacia mangium Willd., Schima wallichii Choisy, and Cunninghamia lanceolata (Lamb.) Hook are the three main vegetation restoration pioneer species in southern China, but no comparative research on the water use strategy of these three tree species have been reported. Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and soil water content (SWC) at different soil depths control the sap flux density (Js) in the dry and wet seasons. We measured the Js of these three tree species by using the thermal dissipation method in low subtropical China. We found that both S. wallichii and C. lanceolata differed clearly in their stomatal behavior from one season to another, while A. mangium did not. The canopy conductance per sapwood area of S. wallichii and C. lanceolata was very sensitive to VPD in the dry season, but not in the wet season. The Js of A. mangium was negatively correlated to SWC in all soil layers and during both seasons, while the other two species were not sensitive to SWC in the deeper layers and only positively correlated to SWC in dry season. Our results demonstrate that the three species have distinct water use strategies and may therefore respond differently to changing climate.


Author(s):  
K.C. Newton

Thermal effects in lens regulator systems have become a major problem with the extension of electron microscope resolution capabilities below 5 Angstrom units. Larger columns with immersion lenses and increased accelerating potentials have made solutions more difficult by increasing the power being handled. Environmental control, component choice, and wiring design provide answers, however. Figure 1 indicates with broken lines where thermal problems develop in regulator systemsExtensive environmental control is required in the sampling and reference networks. In each case, stability better than I ppm/min. is required. Components with thermal coefficients satisfactory for these applications without environmental control are either not available or priced prohibitively.


Sign in / Sign up

Export Citation Format

Share Document