Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop

2019 ◽  
Vol 213 ◽  
pp. 97-106 ◽  
Author(s):  
Nader Pirmoradian ◽  
Naser Davatgar
2019 ◽  
Vol 8 (4) ◽  
pp. 2859-2866

The rapid increase of desertification’s degradation is one of the worst environmental and economic threats for dry areas. Climate changes, very year impacts thousands of areas across the globe. The high cost of electricity and diesel-based fuel affects photovoltaic water pumping requirements for irrigation in many parts of the world. Solar irradiance in every dry place is extremely high due the drought increase. Thus, using solar energy for water pumping is a promising alternative sources of energy. Undertaking irrigation for a particular place and crop requires not only skills in the irrigation planning but also in the power requirement of the entire system. A reliable and accurate estimation of ET rate and irrigation water requirement (IWR) are soundly important in irrigation field. This sought to accurately estimate the irrigation power requirement by using PVsyst software on nine different pumps technologies combinations with different type of converters at 100m, 150m, 180m, and 200m of Total dynamic Head (TDH). The study has been conducted in four sections, the first section dealt with the assessment of the collected data, the second section with the simulations, the third one with the irrigation water requirement and finally irrigation water requirement. The results found in study show that IPR of a crop is majorly depend on the TDH. Among the nine combinations, results show that the Maximum Power Point Tracking (MPPT) technology is the best in terms of power requirement of selected the crop. Furthermore, the maximum and minimum values of the irrigation water requirement for millet crop was found to be 12.9 mm/day and 4.9mm/day respectively.


2020 ◽  
Vol 8 (5) ◽  
pp. 1060-1068
Author(s):  
Santhosh UN ◽  
Desai BK ◽  
Satyanarayana Rao ◽  
Masthana Reddy BG ◽  
Vinay Krishnamurthy ◽  
...  

1985 ◽  
pp. 755-765
Author(s):  
Shie-Yui Liong ◽  
Ongko Sutjahyo ◽  
Bernard Rasli

2019 ◽  
Author(s):  
MAYA AMALIA ACHYADI ◽  
KOICHIRO OHGUSHI ◽  
TOSHIHIRO MORITA ◽  
SU WAI THIN ◽  
WATARU KAWAHARA

2020 ◽  
Vol 710 ◽  
pp. 135589 ◽  
Author(s):  
Jonathan J. Ojeda ◽  
Ehsan Eyshi Rezaei ◽  
Tomas A. Remenyi ◽  
Mathew A. Webb ◽  
Heidi A. Webber ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 427-442 ◽  
Author(s):  
S. Shrestha ◽  
N. M. M. Thin ◽  
P. Deb

This study analyzes the impacts of climate change on irrigation water requirement (IWR) and yield for rainfed rice and irrigated paddy, respectively, at Ngamoeyeik Irrigation Project in Myanmar. Climate projections from two General Circulation Models, namely ECHAM5 and HadCM3 were derived for the 2020s, 2050s, and 2080s. The climate variables were downscaled to basin level by using the Statistical DownScaling Model. The AquaCrop model was used to simulate the yield and IWR under future climate. The analysis shows a decreasing trend in maximum temperature for three scenarios and three time windows considered; however, an increasing trend is observed for minimum temperature for all cases. The analysis on precipitation also suggests that rainfall in wet season is expected to vary largely from −29 to +21.9% relative to the baseline period. A higher variation is observed for the rainfall in dry season ranging from −42% for 2080s, and +96% in the case of 2020s. A decreasing trend of IWR is observed for irrigated paddy under the three scenarios indicating that small irrigation schemes are suitable to meet the requirements. An increasing trend in the yield of rainfed paddy was estimated under climate change demonstrating increased food security in the region.


Sign in / Sign up

Export Citation Format

Share Document